1
|
Trujillo‐Bastidas CD, Taylor MJ, Díaz‐Londoño GM. Clinical implementation and patient-specific quality assurance solutions for real-time target tracking and dynamic delivery in Radixact synchrony. J Appl Clin Med Phys 2025; 26:e14545. [PMID: 39361684 PMCID: PMC11713629 DOI: 10.1002/acm2.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The installation and testing of the first Radixact with Synchrony system in Colombia marked a significant milestone in Latin America's medical landscape. There was a need to devise a robust quality assurance protocol to comprehensively evaluate both dose delivery and motion tracking accuracy. However, testing experiences under clinical conditions have not been extensively reported. Additionally, there are limited recommended measuring devices for Synchrony evaluation. PURPOSE To validate and implement an alternative setup for dynamic-PSQA while testing Synchrony's functionality under clinical scenarios, including real-patient motion traces, and to provide guidance to new centers undergoing clinical implementation of Helical Synchrony. METHODS This approach involves using the Iba miniPhantomR with strategically placed fiducial markers for configuring Gafchromic-films and array-based setups. When paired with the CIRS Dynamic Platform, this enables an innovative dynamic setup with trackable features for Synchrony delivery testing. Assessment scenarios, including compensation (M1S1) and no-motion compensation (M1S0), were evaluated using 2D-gamma pass rate analysis with multiple clinical gamma criteria. The Synchrony-Simulation feature was used to assess pre-treatment performance and capture the patient's target motion pattern. Synchrony for common clinical cases with patient's motion-traces was validated. RESULTS The results for M1S0 and M1S1 demonstrated consistency with previous studies evaluating Synchrony functionality. Analysis using different gamma criteria unveiled dosimetric differences and impacts across various motion ranges. The application of effective kV-dose subtraction for array-based methods is of upmost importance when evaluating dynamic-PSQA with stringent gamma-criteria. However, no significant kV-dose impact on EBT3-Film was detectable. CONCLUSION Two implemented configurations for dynamic-PSQA setups were validated and successfully integrated into our clinic. We addressed both the benefits and limitations of array-based and film-based methods. The functionality and limitations of Synchrony were evaluated using the proposed setups. The potential utility of Synchrony-Simulation, along with the proposed patient-case classification table, can offer valuable support for new users during the clinical implementation of Synchrony treatments.
Collapse
Affiliation(s)
- Christian D. Trujillo‐Bastidas
- Clínica de Oncología Astorga, Departamento de Radioterapia/Universidad Nacional de Colombia ‐ Sede Medellín, Facultad de CienciasDepartamento de Física, Grupo de Investigación de Física RadiológicaMedellínColombia
| | | | - Gloria M. Díaz‐Londoño
- Universidad Nacional de Colombia ‐ Sede Medellín, Facultad de Ciencias, Departamento de Física
Grupo de Investigación de Física RadiológicaMedellínColombia
| |
Collapse
|
2
|
Samadi Miandoab P, Setayeshi S, Blanck O, Saramad S. Feasibility study of using next-generation reservoir computing (NG-RC) model to estimate liver tumor motion from external breathing signals. Med Phys 2024. [PMID: 39714092 DOI: 10.1002/mp.17595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Respiratory motion is a challenge for accurate radiotherapy that may be mitigated by real-time tracking. Commercial tracking systems utilize a hybrid external-internal correlation model (ECM), integrating continuous external breathing monitoring with sparse X-ray imaging of the internal tumor position. PURPOSE This study investigates the feasibility of using the next generation reservoir computing (NG-RC) model as a hybrid ECM to transform measured external motions into estimated 3D internal motions. METHODS The NG-RC model utilizes the nonlinear vector autoregressive (NVAR) machine to account for the hysteresis or phase differences between external and internal motions. The datasets used to evaluate the efficacy of the NG-RC model include 57 motion traces from the CyberKnife system. The datasets were divided into three regions (central, lower, and upper livers) and three motion patterns. These patterns include linear and nonlinear motion patterns (Group A), hysteresis motion patterns (Group B), and all motion patterns (Group C). Moreover, various updating techniques were examined, such as continuously updating the NG-RC model using the first-in-first-out (FIFO) approach and sampling the internal tumor position every 0 s (strategy A), 60 s (strategy B), 30 s (strategy C), and 50 s (strategy D). RESULTS The NG-RC model combined with strategy C resulted in better estimation accuracy than the reported CyberKnife cases (Wilcoxon signed rank p < 0.05). For linear and nonlinear motion patterns, the 3D radial estimation accuracy (mean ± SD) using the NG-RC model combined with strategy C and the CyberKnife system was 1.20 ± 0.78 and 1.1 ± 0.20 mm in the central liver, 0.66 ± 0.25 and 1.49 ± 0.50 mm in the lower liver, and 1.73 ± 0.86 and 1.61 ± 0.42 mm in the upper liver. For hysteresis motion patterns, the corresponding values were 1.13 ± 0.37 and 1.45 ± 0.33 mm, 1.43 ± 1.30 and 1.67 ± 0.42 mm, and 1.20 ± 0.68 and 1.46 ± 0.54 mm in the central, lower, and upper livers, respectively. CONCLUSION This study proposed a new hybrid correlation model for real-time tumor tracking, which can be used to account for both linear and nonlinear motion patterns, as well as hysteresis motion patterns. Additionally, the NG-RC model required shorter training data sets (15 s) during pre-treatment and short internal motion sampling (every 30 s) during treatment compared to other ECMs.
Collapse
Affiliation(s)
- Payam Samadi Miandoab
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Setayeshi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Shahyar Saramad
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Yamauchi R, Tomita F. Evaluation of dynamic accuracy and latency of a surface-guided radiotherapy system. Radiol Phys Technol 2024:10.1007/s12194-024-00866-y. [PMID: 39609349 DOI: 10.1007/s12194-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
The aim of this study is to evaluate the dynamic accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT in compliance with SGRT guidelines. Beam characteristics-flatness, symmetry, beam quality, and output-were compared between gated and nongated beams using a two-dimensional ionization chamber array and a Farmer-type chamber. Dynamic accuracy was assessed using a moving platform and breast phantom, with measurements taken for various shift values (5, 10, 30 mm), region-of-interest (ROI) shapes, reference-surface image types (DICOM and capture), surface resolutions, and room illuminations. Latency due to differences in frame rates was evaluated using radiochromic film, calculated from position displacements of profiles at two speeds. Differences in beam characteristics between gated and nongated beams were within 0.1%. Dynamic accuracy showed minimal dependence on settings, with deviations of < 1 mm for a 10-mm shift. A maximum displacement of 1.9 mm was observed with a 30-mm shift at the body ROI. Beam-on latency at 12, 16, 25, and 35 frames per second was 253.2 ± 21.9, 225.7 ± 33.7, 177.1 ± 43.0, and 112.4 ± 29.2 ms, respectively, with similar trends for beam-off latency. This study is the first to evaluate the dynamic accuracy of the TrueBeam and AlignRT system under SGRT-specific settings. While accuracy was generally maintained (< 1 mm), ROI shape significantly impacted results. Latency results indicate that certain frame rates may not meet guideline limits, underscoring the need for careful SGRT system use in clinical applications.
Collapse
Affiliation(s)
- Ryohei Yamauchi
- Department of Radiation Oncology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan.
| | - Fumihiro Tomita
- Department of Radiation Oncology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan
| |
Collapse
|
4
|
Samadi Miandoab P, Worm E, Hansen R, Weber B, Høyer M, Saramad S, Setayeshi S, Poulsen PR. Accuracy of four models and update strategies to estimate liver tumor motion from external respiratory motion. Front Oncol 2024; 14:1470650. [PMID: 39381048 PMCID: PMC11458717 DOI: 10.3389/fonc.2024.1470650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study investigates different strategies for estimating internal liver tumor motion during radiotherapy based on continuous monitoring of external respiratory motion combined with sparse internal imaging. Methods Fifteen patients underwent three-fraction stereotactic liver radiotherapy. The 3D internal tumor motion (INT) was monitored by electromagnetic transponders while a camera monitored the external marker block motion (EXT). The ability of four external-internal correlation models (ECM) to estimate INT as function of EXT was investigated: a simple linear model (ECM1), an augmented linear model (ECM2), an augmented quadratic model (ECM3), and an extended quadratic model (ECM4). Each ECM was constructed by fitting INT and EXT during the first 60s of each fraction. The fit accuracy was calculated as the root-mean-square error (RMSE) between ECM-estimated and actual tumor motion. Next, the RMSE of the ECM-estimated tumor motion throughout the fractions was calculated for four simulated ECM update strategies: (A) no update, 0.33Hz internal sampling with continuous update of either (B) all ECM parameters based on the last 2 minutes samples or (C) only the baseline term based on the last 5 samples, (D) full ECM update every minute using 20s continuous internal sampling. Results The augmented quadratic ECM3 had best fit accuracy with mean (± SD)) RMSEs of 0.32 ± 0.11mm (left-right, LR), 0.79 ± 0.30mm (cranio-caudal, CC) and 0.56 ± 0.31mm (anterior-posterior, AP). However, the simpler augmented linear ECM2 combined with frequent baseline updates (update strategy C) gave best motion estimations with mean RMSEs of 0.41 ± 0.14mm (LR), 1.02 ± 0.33mm (CC) and 0.78 ± 0.48mm (AP). This was significantly better than all other ECM-update strategy combinations for CC motion (Wilcoxon signed rank p<0.05). Conclusion The augmented linear ECM2 combined with frequent baseline updates provided the best compromise between fit accuracy and robustness towards irregular motion. It allows accurate internal motion monitoring by combining external motioning with sparse 0.33Hz kV imaging, which is available at conventional linacs.
Collapse
Affiliation(s)
- Payam Samadi Miandoab
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Shahyar Saramad
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Setayeshi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Im JY, Micah N, Perkins AE, Mei K, Geagan M, Noël PB. PixelPrint 4D : A 3D printing method of fabricating patient-specific deformable CT phantoms for respiratory motion applications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311385. [PMID: 39211887 PMCID: PMC11361231 DOI: 10.1101/2024.08.02.24311385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
All in-vivo medical imaging is impacted by patient motion, especially respiratory motion, which has a significant influence on clinical workflows in diagnostic imaging and radiation therapy. Many technologies such as motion artifact reduction and tumor tracking algorithms have been developed to compensate for respiratory motion during imaging. To assess these technologies, respiratory motion phantoms (RMPs) are required as preclinical testing environments, for instance, in computed tomography (CT). However, current RMPs are highly simplified and do not exhibit realistic tissue structures or deformation patterns. With the rise of more complex motion compensation technologies such as deep learning-based algorithms, there is a need for more realistic RMPs. This work introduces PixelPrint 4D , a 3D printing method designed to fabricate lifelike, patient-specific deformable lung phantoms for CT imaging. The phantom demonstrated accurate replication of patient lung structures, textures, and attenuation profiles. Furthermore, it exhibited accurate nonrigid deformations, volume changes, and attenuation changes under compression. PixelPrint 4D enables the production of highly realistic RMPs, surpassing existing models to offer more robust testing environments for a diverse array of novel CT technologies.
Collapse
|
6
|
Dekker J, van het Schip S, Essers M, de Smet M, Kusters M, de Kruijf W. Characterization of the IDENTIFY TM surface scanning system for radiation therapy setup on a closed-bore linac. J Appl Clin Med Phys 2024; 25:e14326. [PMID: 38497554 PMCID: PMC11005961 DOI: 10.1002/acm2.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE In radiation therapy, surface guidance can be used for patient setup and intra-fraction motion monitoring. The surface guided radiation therapy (SGRT) system from Varian Medical systems, IDENTIFYTM, consists of three pods, including cameras and a random pattern projector, mounted on the ceiling. The information captured by the cameras is used to make a reconstruction of the surface. The aim of the study was to assess the technical performance of this SGRT system on a closed-bore linac. METHODS Phantom measurements were performed to assess the accuracy, precision, reproducibility and temporal stability of the system, both in align and in load position. Translations of the phantoms in lateral, longitudinal, and vertical direction, and rotations around three axes (pitch, roll and yaw) were performed with an accurate, in-house built, positioning stage. Different phantom geometries and different surface colors were used, and various ambient light intensities were tested. RESULTS The accuracy of the IDENTIFYTM system at the closed-bore linac was 0.07 mm and 0.07 degrees at load position, and 0.06 mm and 0.01 degrees at align position for the white head phantom. The precision was 0.02 mm and 0.02 degrees in load position, and 0.01 mm and 0.02 degrees in align position. The accuracy for the Penta-Guide phantom was comparable to the white head phantom, with 0.06 mm and 0.01 degrees in align position. The system was slightly less accurate for translations of the CIRS lung phantom in align position (0.20 mm, 0.05 degrees). Reproducibility measurements showed a variation of 0.02 mm in load position. Regarding the temporal stability, the maximum drift over 30 min was 0.33 mm and 0.02 degrees in load position. No effect of ambient light level on the accuracy of the IDENTIFYTM system was observed. Regarding different surface colors, the accuracy of the system for a black phantom was slightly worse compared to a white surface, but not clinical relevant. CONCLUSION The IDENTIFYTM system can adequately be used for motion monitoring on a closed-bore linac with submillimeter accuracy. The results of the performed measurements meet the clinical requirements described in the guidelines of the AAPM and the ESTRO.
Collapse
|
7
|
Ayrancıoğlu O, Ayrancıoğlu C, Arıkan ŞC, Alıcıkuş LZA. Performance assessment of the surface-guided radiation therapy system: Varian Identify. Med Dosim 2024; 49:222-228. [PMID: 38320884 DOI: 10.1016/j.meddos.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Image-guided radiotherapy (IGRT) systems using ionizing radiation may increase the risk of secondary cancer and normal tissue toxicity due to additional radiation exposure caused by large field sizes or repeated scans during X-ray imaging. As an alternative to these modalities, surface-guided radiotherapy (SGRT) systems which do not employ ionizing radiation have been developed. This study presents a comprehensive performance evaluation of the Varian Identify SGRT system by using an anthropomorphic Alderson Rando phantom in three different aspects: (a) the accuracy and reproducibility of the system in different regions of interest (ROI) for varying couch displacements, (b) the setup accuracy of the system for patient positioning based on different computed tomography (CT) slice thicknesses, and (c) the potential influence of obstructing SGRT cameras by the gantry on the system's overall accuracy and reproducibility. The accuracy and reproducibility of the SGRT system fell within 1 mm and 1°. Nevertheless, in certain situations, these values were observed to exceed prescribed limits. Consequently, concerning SGRT tolerance limits for treatment applications, careful consideration of ROIs and offset values of the system is crucial. We also recommend that patients should ideally be set up during 0° gantry rotation, and the on-board imaging (OBI) system should be retracted to prevent obstruction of the cameras. Additionally, reference CT images with a slice thickness of under 3 mm are recommended for this purpose.
Collapse
Affiliation(s)
- Oğuzhan Ayrancıoğlu
- Department of Radiation Oncology, İzmir Tınaztepe University Galen Hospital, Izmir, Turkey.
| | | | - Şerife Ceren Arıkan
- Department of Radiation Oncology, İzmir Tınaztepe University Galen Hospital, Izmir, Turkey
| | | |
Collapse
|
8
|
Qubala A, Shafee J, Batista V, Liermann J, Winter M, Piro D, Jäkel O. Comparative evaluation of a surface-based respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms. J Appl Clin Med Phys 2024; 25:e14174. [PMID: 37815197 PMCID: PMC10860430 DOI: 10.1002/acm2.14174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Four-dimensional computed tomography (4DCT), which relies on breathing-induced motion, requires realistic surrogate information of breathing variations to reconstruct the tumor trajectory and motion variability of normal tissues accurately. Therefore, the SimRT surface-guided respiratory monitoring system has been installed on a Siemens CT scanner. This work evaluated the temporal and spatial accuracy of SimRT versus our commonly used pressure sensor, AZ-733 V. A dynamic thorax phantom was used to reproduce regular and irregular breathing patterns acquired by SimRT and Anzai. Various parameters of the recorded breathing patterns, including mean absolute deviations (MAD), Pearson correlations (PC), and tagging precision, were investigated and compared to ground-truth. Furthermore, 4DCT reconstructions were analyzed to assess the volume discrepancy, shape deformation and tumor trajectory. Compared to the ground-truth, SimRT more precisely reproduced the breathing patterns with a MAD range of 0.37 ± 0.27 and 0.92 ± 1.02 mm versus Anzai with 1.75 ± 1.54 and 5.85 ± 3.61 mm for regular and irregular breathing patterns, respectively. Additionally, SimRT provided a more robust PC of 0.994 ± 0.009 and 0.936 ± 0.062 for all investigated breathing patterns. Further, the peak and valley recognition were found to be more accurate and stable using SimRT. The comparison of tumor trajectories revealed discrepancies up to 7.2 and 2.3 mm for Anzai and SimRT, respectively. Moreover, volume discrepancies up to 1.71 ± 1.62% and 1.24 ± 2.02% were found for both Anzai and SimRT, respectively. SimRT was validated across various breathing patterns and showed a more precise and stable breathing tracking, (i) independent of the amplitude and period, (ii) and without placing any physical devices on the patient's body. These findings resulted in a more accurate temporal and spatial accuracy, thus leading to a more realistic 4DCT reconstruction and breathing-adapted treatment planning.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Faculty of MedicineUniversity of HeidelbergHeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Vania Batista
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Jakob Liermann
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Daniel Piro
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
- Department of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
9
|
Qubala A, Shafee J, Tessonnier T, Horn J, Winter M, Naumann J, Jäkel O. Characteristics of breathing-adapted gating using surface guidance for use in particle therapy: A phantom-based end-to-end test from CT simulation to dose delivery. J Appl Clin Med Phys 2024; 25:e14249. [PMID: 38128056 PMCID: PMC10795430 DOI: 10.1002/acm2.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
To account for intra-fractional tumor motion during dose delivery in radiotherapy, various treatment strategies are clinically implemented such as breathing-adapted gating and irradiating the tumor during specific breathing phases. In this work, we present a comprehensive phantom-based end-to-end test of breathing-adapted gating utilizing surface guidance for use in particle therapy. A commercial dynamic thorax phantom was used to reproduce regular and irregular breathing patterns recorded by the GateRT respiratory monitoring system. The amplitudes and periods of recorded breathing patterns were analysed and compared to planned patterns (ground-truth). In addition, the mean absolute deviations (MAD) and Pearson correlation coefficients (PCC) between the measurements and ground-truth were assessed. Measurements of gated and non-gated irradiations were also analysed with respect to dosimetry and geometry, and compared to treatment planning system (TPS). Further, the latency time of beam on/off was evaluated. Compared to the ground-truth, measurements performed with GateRT showed amplitude differences between 0.03 ± 0.02 mm and 0.26 ± 0.03 mm for regular and irregular breathing patterns, whilst periods of both breathing patterns ranged with a standard deviation between 10 and 190 ms. Furthermore, the GateRT software precisely acquired breathing patterns with a maximum MAD of 0.30 ± 0.23 mm. The PCC constantly ranged between 0.998 and 1.000. Comparisons between TPS and measured dose profiles indicated absolute mean dose deviations within institutional tolerances of ±5%. Geometrical beam characteristics also varied within our institutional tolerances of 1.5 mm. The overall time delays were <60 ms and thus within both recommended tolerances published by ESTRO and AAPM of 200 and 100 ms, respectively. In this study, a non-invasive optical surface-guided workflow including image acquisition, treatment planning, patient positioning and gated irradiation at an ion-beam gantry was investigated, and shown to be clinically viable. Based on phantom measurements, our results show a clinically-appropriate spatial, temporal, and dosimetric accuracy when using surface guidance in the clinical setting, and the results comply with international and institutional guidelines and tolerances.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Faculty of MedicineUniversity of HeidelbergHeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Thomas Tessonnier
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Julian Horn
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jakob Naumann
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| |
Collapse
|
10
|
Butz I, Fernandez M, Uneri A, Theodore N, Anderson WS, Siewerdsen JH. Performance assessment of surgical tracking systems based on statistical process control and longitudinal QA. Comput Assist Surg (Abingdon) 2023; 28:2275522. [PMID: 37942523 DOI: 10.1080/24699322.2023.2275522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
A system for performance assessment and quality assurance (QA) of surgical trackers is reported based on principles of geometric accuracy and statistical process control (SPC) for routine longitudinal testing. A simple QA test phantom was designed, where the number and distribution of registration fiducials was determined drawing from analytical models for target registration error (TRE). A tracker testbed was configured with open-source software for measurement of a TRE-based accuracy metric ε and Jitter (J ). Six trackers were tested: 2 electromagnetic (EM - Aurora); and 4 infrared (IR - 1 Spectra, 1 Vega, and 2 Vicra) - all NDI (Waterloo, ON). Phase I SPC analysis of Shewhart mean (x ¯ ) and standard deviation (s ) determined system control limits. Phase II involved weekly QA of each system for up to 32 weeks and identified Pass, Note, Alert, and Failure action rules. The process permitted QA in <1 min. Phase I control limits were established for all trackers: EM trackers exhibited higher upper control limits than IR trackers in ε (EM: x ¯ ε ∼ 2.8-3.3 mm, IR: x ¯ ε ∼ 1.6-2.0 mm) and Jitter (EM: x ¯ jitter ∼ 0.30-0.33 mm, IR: x ¯ jitter ∼ 0.08-0.10 mm), and older trackers showed evidence of degradation - e.g. higher Jitter for the older Vicra (p-value < .05). Phase II longitudinal tests yielded 676 outcomes in which a total of 4 Failures were noted - 3 resolved by intervention (metal interference for EM trackers) - and 1 owing to restrictive control limits for a new system (Vega). Weekly tests also yielded 40 Notes and 16 Alerts - each spontaneously resolved in subsequent monitoring.
Collapse
Affiliation(s)
- I Butz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - M Fernandez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - N Theodore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - W S Anderson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Liu B, Shi C, Prakash M, Gonzalez B, Kassardjian A, Kim J, Mandelin P, Williams T, Liu A. Comparison of baseline drifts using three reflector blocks versus using a single reflector block for the calibration of wall-mounted Respiratory Gating for Scanner (RGSC) camera integrated with a CT. J Appl Clin Med Phys 2023; 24:e14199. [PMID: 37961991 PMCID: PMC10691618 DOI: 10.1002/acm2.14199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The calibration of the Respiratory Gating for SCanner (RGSC) system is critical to achieve better and more stable accuracy. The current procedure for a wall-mounted RGSC system has a relatively large residual error. PURPOSE To compare the baseline drifts in the image acquisition of DIBH using three reflector blocks versus using a single reflector block in the calibration of a wall-mounted RGSC camera system. MATERIALS AND METHODS Varian provides a calibration plate with three rows of calibration points: each row is separated by 15 cm longitudinally and by 10 cm laterally. In Varian's single-block calibration method, the reflector block was first placed on the center point of the calibration plate and aligned with the scanner isocenter. The calibration took a picture of the block, then placed the block on the other eight points sequentially. In the proposed three-block method, we placed three reflector blocks on the center row, with the center block aligned with the isocenter, and we took a picture of the center block by manually blocking the other two blocks in calibration. By moving the couch longitudinally in or out 15 cm, the calibration goes through all nine points. Monte Carlo simulation was done using Matlab to analyze the calibration matrix eigenvalue characteristics. RESULTS For a typical scan length of 40 cm of DIBH, the residual baseline drift in simulated DIBH is 0.02 ± 0.03 versus 0.30 ± 0.12 cm for three-block calibration and single-block calibration, respectively. To achieve 0.5 mm tolerance for the eigenvalue, the laser and reflector box should be within ±3 mm uncertainties based on the eigenvalue simulation. CONCLUSION Three-block calibration method effectively removes baseline drift caused by couch movement in DIBH/4D CT scan for the wall-mounted camera while the single-block calibration method still has significant residual baseline drift.
Collapse
Affiliation(s)
- Bei Liu
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Chengyu Shi
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Maneesha Prakash
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Bryan Gonzalez
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Ari Kassardjian
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Ji Kim
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Paul Mandelin
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Terence Williams
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - An Liu
- Division of Radiation OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
12
|
Oku Y, Toyota M, Saigo Y. Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiol Phys Technol 2023; 16:532-542. [PMID: 37812309 DOI: 10.1007/s12194-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to evaluate the detection accuracy of the AlignRT-InBore system in surface-guided radiation therapy using a phantom and to determine the feasibility of the system by conducting a comparative analysis with cone-beam computed tomography (CBCT) registration. The AlignRT-InBore system integrated with the ETHOS Therapy was used. A phantom and a QUASAR phantom were employed to examine the specific areas of interest relevant to clinical cases. The evaluation involved monitoring translations for approximately 30 min and assessing the position detection accuracy for static and moving objects. Fifty clinical cases were used to evaluate the position detection accuracy and its relationship with the localization accuracy of CBCT before treatment. The detection accuracy of static and moving objects was within 1.0 mm using the phantom. However, the longitudinal direction tended to be larger than the other directions. Regarding the accuracy of localization in clinical cases, a strong and statistically significant (p < 0.01) correlation was observed in each direction. A detection accuracy within 1.0 mm is possible for static and moving objects. The detection accuracy of the patient setup using the InBore optical patient positioning system was extremely high, and the patient could be detected with high precision, suggesting its usefulness.
Collapse
Affiliation(s)
- Yoshifumi Oku
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan.
| | - Masahiko Toyota
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| | - Yasumasa Saigo
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| |
Collapse
|
13
|
Yoshikawa H, Lafferty MH, Griffin LR, LaRue SM. A retrospective study of sinonasal tumors in 182 dogs treated with stereotactic radiotherapy (3 × 10 Gy) (2010-2015). J Vet Intern Med 2023; 37:2356-2367. [PMID: 37688322 PMCID: PMC10658520 DOI: 10.1111/jvim.16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) is an emerging treatment for sinonasal tumors in dogs. Reported results regarding tumor control and incidence of acute and late radiation morbidities are inconsistent. OBJECTIVES To determine treatment efficacy and prognostic indicators of SRT in dogs with sinonasal tumors and to quantify acute and late radiation morbidities. ANIMALS One hundred and eighty-two client-owned dogs with sinonasal tumors diagnosed cytologically, histologically, or radiographically that underwent SRT. METHODS Single-arm retrospective study by reviewing medical records of dogs treated with SRT (10 Gy × 3) between 2010 and 2015. Kaplan-Meier analysis was used to determine overall survival (OST; from the first day of SRT to death by any cause) and disease-specific survival times (DSST; OST but censoring tumor/treatment-unrelated death). Tumors were staged using modified Adams criteria. RESULTS Median OST and DSST of dogs treated with 1 course of SRT was 441 (95% CI: 389-493 days) and 482 (428-536 days) days, respectively with skin/oral cavity acute morbidities observed in 3% of dogs. DSST in dogs with stage 4 disease showed no statistical difference compared to other stages (P = .64). Oro-nasal (n = 2) or naso-cutaneous (n = 11) fistula development occurred in 7.1% of dogs with median time of 425 days (range: 83-1733 days). Possible chronic rhinitis after SRT was recorded in 54 of 88 dogs (61%) where information was available. CONCLUSIONS AND CLINICAL IMPORTANCE Results are comparable to other reports of treatment of SRT. Acute morbidities were minimal. Modified Adams stage scheme appeared to be inappropriate for prognostication for dogs with sinonasal tumors treated with SRT.
Collapse
Affiliation(s)
- Hiroto Yoshikawa
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Mary H. Lafferty
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
| | - Lynn R. Griffin
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Susan M. LaRue
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
14
|
Dong Y, Hu P, Li X, Liu W, Yan B, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of distinct gating strategies in cine MR image-guided breath-hold pancreatic cancer radiotherapy. J Appl Clin Med Phys 2023; 24:e14078. [PMID: 37335543 PMCID: PMC10562039 DOI: 10.1002/acm2.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To investigate the dosimetry effects of different gating strategies in cine magnetic resonance imaging (MRI)-guided breath-hold pancreatic cancer radiotherapy. METHODS Two cine MRI-based gating strategies were investigated: a tumor contour-based gating strategy at a gating threshold of 0-5% and a tumor displacement-based gating strategy at a gating threshold of 3-5 mm. The cine MRI videos were obtained from 17 pancreatic cancer patients who received MRI-guided radiation therapy. We calculated the tumor displacement in each cine MR frame that satisfied the gating threshold and obtained the proportion of frames with different displacements. We generated IMRT and VMAT plans using a 33 Gy prescription, and motion plans were generated by adding up all isocenter-shift plans corresponding to different tumor displacements. The dose parameters of GTV, PTV, and organs at risk (OAR) were compared between the original and motion plans. RESULTS In both gating strategies, the difference was significant in PTV coverage but not in GTV coverage between the original and motion plans. OAR dose parameters deteriorate with increasing gating threshold. The beam duty cycle increased from 19.5±14.3% (median 18.0%) to 60.8±15.6% (61.1%) for gating thresholds from 0% to 5% in tumor contour-based gating and from 51.7±11.5% (49.7%) to 67.3±12.4% (67.1%) for gating thresholds from 3 to 5 mm in tumor displacement-based gating. CONCLUSION In tumor contour-based gating strategy, the dose delivery accuracy deteriorates while the dose delivery efficiency improves with increasing gating thresholds. To ensure treatment efficiency, the gating threshold might be no less than 3%. A threshold up to 5% may be acceptable in terms of the GTV coverage. The displacement-based gating strategy may serve as a potential alternative to the tumor contour based gating strategy, in which the gating threshold of approximately 4 mm might be a good choice for reasonably balancing the dose delivery accuracy and efficiency.
Collapse
Affiliation(s)
- Yuyan Dong
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Panpan Hu
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaoyang Li
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Wei Liu
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Bing Yan
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Fei Yang
- The Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | | | | | - Yidong Yang
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
15
|
Zhao H, Haacke C, Sarkar V, Paxton A, Jessica Huang Y, Szegedi M, Price RG, Frances Su FC, Rassiah-Szegedi P, Salter B. Initial clinical evaluation of a novel combined biometric, radio-frequency identification, and surface imaging system. Phys Med 2023; 114:103146. [PMID: 37778208 DOI: 10.1016/j.ejmp.2023.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/15/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
PURPOSE To evaluate and characterize the overall clinical functionality and workflow of the newly released Varian Identify system (version 2.3). METHODS Three technologies included in the Varian Identify system were evaluated: patient biometric authentication, treatment accessory device identification, and surface-guided radiation therapy (SGRT) function. Biometric authentication employs a palm vein reader. Treatment accessory device verification utilizes two technologies: device presence via Radio Frequency Identification (RFID) and position via optical markers. Surface-guidance was evaluated on both patient orthopedic setup at loading position and surface matching and tracking at treatment isocenter. A phantom evaluation of the consistency and accuracy for Identify SGRT function was performed, including a system consistency test, a translational shift and rotational accuracy test, a pitch and roll accuracy test, a continuous recording test, and an SGRT vs Cone-Beam CT (CBCT) agreement test. RESULTS 201 patient authentications were verified successfully with palm reader. All patient treatment devices were successfully verified for their presences and positions (indexable devices). The patient real-time orthopedic pose was successfully adjusted to match the reference surface captured at simulation. SGRT-reported shift consistency against couch readout was within (0.1 mm, 0.030). The shift accuracy was within (0.3 mm, 0.10). In continuous recording mode, the maximum variation was 0.2 ± 0.12 mm, 0.030 ± 0.020. The difference between Identify SGRT offset and CBCT was within (1 mm, 10). CONCLUSIONS This clinical evaluation confirms that Identify accurately functions for patient palm identification and patient treatment device presence and position verification. Overall SGRT consistency and accuracy was within (1 mm, 10), within the 2 mm criteria of AAPM TG302.
Collapse
Affiliation(s)
- Hui Zhao
- University of Utah, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jassar H, Tai A, Chen X, Keiper TD, Paulson E, Lathuilière F, Bériault S, Hébert F, Savard L, Cooper DT, Cloake S, Li XA. Real-time motion monitoring using orthogonal cine MRI during MR-guided adaptive radiation therapy for abdominal tumors on 1.5T MR-Linac. Med Phys 2023; 50:3103-3116. [PMID: 36893292 DOI: 10.1002/mp.16342] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Real-time motion monitoring (RTMM) is necessary for accurate motion management of intrafraction motions during radiation therapy (RT). PURPOSE Building upon a previous study, this work develops and tests an improved RTMM technique based on real-time orthogonal cine magnetic resonance imaging (MRI) acquired during magnetic resonance-guided adaptive RT (MRgART) for abdominal tumors on MR-Linac. METHODS A motion monitoring research package (MMRP) was developed and tested for RTMM based on template rigid registration between beam-on real-time orthogonal cine MRI and pre-beam daily reference 3D-MRI (baseline). The MRI data acquired under free-breathing during the routine MRgART on a 1.5T MR-Linac for 18 patients with abdominal malignancies of 8 liver, 4 adrenal glands (renal fossa), and 6 pancreas cases were used to evaluate the MMRP package. For each patient, a 3D mid-position image derived from an in-house daily 4D-MRI was used to define a target mask or a surrogate sub-region encompassing the target. Additionally, an exploratory case reviewed for an MRI dataset of a healthy volunteer acquired under both free-breathing and deep inspiration breath-hold (DIBH) was used to test how effectively the RTMM using the MMRP can address through-plane motion (TPM). For all cases, the 2D T2/T1-weighted cine MRIs were captured with a temporal resolution of 200 ms interleaved between coronal and sagittal orientations. Manually delineated contours on the cine frames were used as the ground-truth motion. Common visible vessels and segments of target boundaries in proximity to the target were used as anatomical landmarks for reproducible delineations on both the 3D and the cine MRI images. Standard deviation of the error (SDE) between the ground-truth and the measured target motion from the MMRP package were analyzed to evaluate the RTMM accuracy. The maximum target motion (MTM) was measured on the 4D-MRI for all cases during free-breathing. RESULTS The mean (range) centroid motions for the 13 abdominal tumor cases were 7.69 (4.71-11.15), 1.73 (0.81-3.05), and 2.71 (1.45-3.93) mm with an overall accuracy of <2 mm in the superior-inferior (SI), the left-right (LR), and the anterior-posterior (AP) directions, respectively. The mean (range) of the MTM from the 4D-MRI was 7.38 (2-11) mm in the SI direction, smaller than the monitored motion of centroid, demonstrating the importance of the real-time motion capture. For the remaining patient cases, the ground-truth delineation was challenging under free-breathing due to the target deformation and the large TPM in the AP direction, the implant-induced image artifacts, and/or the suboptimal image plane selection. These cases were evaluated based on visual assessment. For the healthy volunteer, the TPM of the target was significant under free-breathing which degraded the RTMM accuracy. RTMM accuracy of <2 mm was achieved under DIBH, indicating DIBH is an effective method to address large TPM. CONCLUSIONS We have successfully developed and tested the use of a template-based registration method for an accurate RTMM of abdominal targets during MRgART on a 1.5T MR-Linac without using injected contrast agents or radio-opaque implants. DIBH may be used to effectively reduce or eliminate TPM of abdominal targets during RTMM.
Collapse
Affiliation(s)
- Hassan Jassar
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy D Keiper
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Ahmed AM, Gargett M, Madden L, Mylonas A, Chrystall D, Brown R, Briggs A, Nguyen T, Keall P, Kneebone A, Hruby G, Booth J. Evaluation of deep learning based implanted fiducial markers tracking in pancreatic cancer patients. Biomed Phys Eng Express 2023; 9. [PMID: 36689758 DOI: 10.1088/2057-1976/acb550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Real-time target position verification during pancreas stereotactic body radiation therapy (SBRT) is important for the detection of unplanned tumour motions. Fast and accurate fiducial marker segmentation is a Requirement of real-time marker-based verification. Deep learning (DL) segmentation techniques are ideal because they don't require additional learning imaging or prior marker information (e.g., shape, orientation). In this study, we evaluated three DL frameworks for marker tracking applied to pancreatic cancer patient data. The DL frameworks evaluated were (1) a convolutional neural network (CNN) classifier with sliding window, (2) a pretrained you-only-look-once (YOLO) version-4 architecture, and (3) a hybrid CNN-YOLO. Intrafraction kV images collected during pancreas SBRT treatments were used as training data (44 fractions, 2017 frames). All patients had 1-4 implanted fiducial markers. Each model was evaluated on unseen kV images (42 fractions, 2517 frames). The ground truth was calculated from manual segmentation and triangulation of markers in orthogonal paired kV/MV images. The sensitivity, specificity, and area under the precision-recall curve (AUC) were calculated. In addition, the mean-absolute-error (MAE), root-mean-square-error (RMSE) and standard-error-of-mean (SEM) were calculated for the centroid of the markers predicted by the models, relative to the ground truth. The sensitivity and specificity of the CNN model were 99.41% and 99.69%, respectively. The AUC was 0.9998. The average precision of the YOLO model for different values of recall was 96.49%. The MAE of the three models in the left-right, superior-inferior, and anterior-posterior directions were under 0.88 ± 0.11 mm, and the RMSE were under 1.09 ± 0.12 mm. The detection times per frame on a GPU were 48.3, 22.9, and 17.1 milliseconds for the CNN, YOLO, and CNN-YOLO, respectively. The results demonstrate submillimeter accuracy of marker position predicted by DL models compared to the ground truth. The marker detection time was fast enough to meet the requirements for real-time application.
Collapse
Affiliation(s)
- Abdella M Ahmed
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Maegan Gargett
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Levi Madden
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,ACRF Image X Institute, Faculty of Medicine and Health, The University of Sydney, NSW Australia
| | - Adam Mylonas
- ACRF Image X Institute, Faculty of Medicine and Health, The University of Sydney, NSW Australia
| | - Danielle Chrystall
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Institute of Medical Physics, School of Physics, The University of Sydney, NSW, Australia
| | - Ryan Brown
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adam Briggs
- Shoalhaven Cancer Care Centre, Shoalhaven District Memorial Hospital, Nowra, NSW, Australia
| | - Trang Nguyen
- ACRF Image X Institute, Faculty of Medicine and Health, The University of Sydney, NSW Australia
| | - Paul Keall
- ACRF Image X Institute, Faculty of Medicine and Health, The University of Sydney, NSW Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Institute of Medical Physics, School of Physics, The University of Sydney, NSW, Australia
| |
Collapse
|
18
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Quality and Safety Considerations in Image Guided Radiation Therapy: An ASTRO Safety White Paper Update. Pract Radiat Oncol 2023; 13:97-111. [PMID: 36585312 DOI: 10.1016/j.prro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This updated report on image guided radiation therapy (IGRT) is part of a series of consensus-based white papers previously published by the American Society for Radiation Oncology addressing patient safety. Since the first white papers were published, IGRT technology and procedures have progressed significantly such that these procedures are now more commonly used. The use of IGRT has now extended beyond high-precision treatments, such as stereotactic radiosurgery and stereotactic body radiation therapy, and into routine clinical practice for many treatment techniques and anatomic sites. Therefore, quality and patient safety considerations for these techniques remain an important area of focus. METHODS AND MATERIALS The American Society for Radiation Oncology convened an interdisciplinary task force to assess the original IGRT white paper and update content where appropriate. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters who selected "strongly agree" or "agree" indicated consensus. SUMMARY This IGRT white paper builds on the previous version and uses other guidance documents to primarily focus on processes related to quality and safety. IGRT requires an interdisciplinary team-based approach, staffed by appropriately trained specialists, as well as significant personnel resources, specialized technology, and implementation time. A thorough feasibility analysis of resources is required to achieve the clinical and technical goals and should be discussed with all personnel before undertaking new imaging techniques. A comprehensive quality-assurance program must be developed, using established guidance, to ensure IGRT is performed in a safe and effective manner. As IGRT technologies continue to improve or emerge, existing practice guidelines should be reviewed or updated regularly according to the latest American Association of Physicists in Medicine Task Group reports or guidelines. Patient safety in the application of IGRT is everyone's responsibility, and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to ensure the highest levels of safety.
Collapse
|
20
|
Qubala A, Schwahofer A, Jersemann S, Eskandarian S, Harrabi S, Naumann P, Winter M, Ellerbrock M, Shafee J, Abtehi S, Herfarth K, Debus J, Jäkel O. Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. Adv Radiat Oncol 2022; 8:101105. [PMID: 36624871 PMCID: PMC9822948 DOI: 10.1016/j.adro.2022.101105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/01/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Surface-guided radiation therapy (SGRT) has been investigated intensively to ensure correct patient positioning during a radiation therapy course. Although the implementation is well defined for photon-beam facilities, only a few analyses have been published for ion-beam therapy centers. To investigate the accuracy, reliability, and efficiency of SGRT used in ion-beam treatments against the conventional skin marks, a retrospective study of a unique SGRT installation in an ion gantry treatment room was conducted, where the environment is quite different to conventional radiation therapy. Methods and Materials There were 32 patients, divided into 3 cohorts-pelvis, limb, and chest/spine tumors-and treated with ion-beams. Two patient positioning workflows based on 300 fractions were compared: workflow with skin marks and workflow with SGRT. Position verification was followed by planar kilo voltage imaging. After image matching, 6 degrees of freedom corrections were recorded to assess interfraction positioning errors. In addition, the time required for patient positioning, image matching, and the number of repeated kilo voltage imaging also were gathered. Results SGRT decreased the translational magnitude shifts significantly (P < .05) by 0.5 ± 1.4 mm for pelvis and 1.9 ± 0.5 mm for limb, whereas for chest/spine, it increased by 0.7 ± 0.3 mm. Rotational corrections were predominantly lowered with SGRT for all cohorts with significant differences in pitch for pelvis (P = .002) and chest/spine (P = .009). The patient positioning time decreased by 18%, 9%, and 15% for pelvis, limb, and chest/spine, respectively, compared with skin marks. By using SGRT, 53% of all studied patients had faster positioning time, and 87.5% had faster matching time. Repositioning and consequent reimaging decreased from about 7% to 2% with a statistically significant difference of .042. Conclusions The quality of patient positioning before ion-beam treatments has been optimized by using SGRT without additional imaging dose. SGRT clearly reduced inefficiencies in the patient positioning workflow.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Corresponding author: Abdallah Qubala, MSc
| | - Andrea Schwahofer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Jersemann
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Saleh Eskandarian
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Patrick Naumann
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Malte Ellerbrock
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,Saarland University of Applied Sciences, Saarbruecken, Germany
| | - Samira Abtehi
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Klaus Herfarth
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
21
|
Peng H, Jin F, Li C, Luo H, Liu Q, He Y, Mao K, Zhou J. The impacts of colors on the catalyst HD system: Gains, integral times, and setups in radiotherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Abdollahi S, Yazdi MHH, Mowlavi AA, Ceberg S, Aznar MC, Tabrizi FV, Salek R, Ghodsi A, Jamali F. Surface guided 3DCRT in deep-inspiration breath-hold for left sided breast cancer radiotherapy: implementation and first clinical experience in Iran. Rep Pract Oncol Radiother 2022; 27:881-896. [PMID: 36523810 PMCID: PMC9746649 DOI: 10.5603/rpor.a2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The aim of the study is to evaluate the overall accuracy of the surface-guided radiotherapy (SGRT) workflow through a comprehensive commissioning and quality assurance procedures and assess the potential benefits of deep-inspiration breath-hold (DIBH) radiotherapy as a cardiac and lung dose reduction approach for left-sided breast cancer irradiation. Materials and methods Accuracy and reproducibility of the optical surface scanner used for DIBH treatment were evaluated using different phantoms. Patient positioning accuracy and reproducibility of DIBH treatment were evaluated. Twenty patients were studied for treatment plan quality in target dose coverage and healthy organ sparing for the two different treatment techniques. Results Reproducibility tests for the surface scanner showed good stability within 1 mm in all directions. The maximum position variation between applied shifts on the couch and the scanner measured offsets is 1 mm in all directions. The clinical study of 200 fractions showed good agreement between the surface scanner and portal imaging with the isocenter position deviation of less than 3 mm in each lateral, longitudinal, and vertical direction. The standard deviation of the DIBH level showed a value of < 2 mm during all evaluated DIBHs. Compared to the free breathing (FB) technique, DIBH showed significant reduction of 48% for heart mean dose, 43% for heart V25, and 20% for ipsilateral lung V20. Conclusion Surface-guided radiotherapy can be regarded as an accurate tool for patient positioning and monitoring in breast radiotherapy. DIBH treatment are considered to be effective techniques in heart and ipsilateral lung dose reductions for left breast radiotherapy.
Collapse
Affiliation(s)
- Sara Abdollahi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Medical Physics Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | | - Ali Asghar Mowlavi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sofie Ceberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Marianne Camille Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Roham Salek
- Radiotherapy and Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Radiotherapy and Oncology Department, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza Ghodsi
- Department of Statistics, Hakim Sabzevari University, Sabzevar, Iran
| | - Farideh Jamali
- Medical Physics Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| |
Collapse
|
23
|
Zhang Y, Zhou H, Chu K, Wu C, Ge Y, Shan G, Zhou J, Cai J, Jin J, Sun W, Chen Y, Huang X. Setup error assessment based on “Sphere-Mask” Optical Positioning System: Results from a multicenter study. Front Oncol 2022; 12:918296. [PMID: 36267985 PMCID: PMC9577199 DOI: 10.3389/fonc.2022.918296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background The setup accuracy plays an extremely important role in the local control of tumors. The purpose of this study is to verify the feasibility of "Sphere-Mask" Optical Positioning System (S-M_OPS) for fast and accurate setup. Methods From 2016 to 2021, we used S-M_OPS to supervise 15441 fractions in 1981patients (with the cancer in intracalvarium, nasopharynx, esophagus, lung, liver, abdomen or cervix) undergoing intensity-modulated radiation therapy (IMRT), and recorded the data such as registration time and mask deformation. Then, we used S-M_OPS, laser line and cone beam computed tomography (CBCT) for co-setup in 277 fractions, and recorded laser line-guided setup errors and S-M_OPS-guided setup errors with CBCT-guided setup result as the standard. Results S-M_OPS supervision results: The average time for laser line-guided setup was 31.75s. 12.8% of the reference points had an average deviation of more than 2 mm and 5.2% of the reference points had an average deviation of more than 3 mm. Co-setup results: The average time for S-M_OPS-guided setup was 7.47s, and average time for CBCT-guided setup was 228.84s (including time for CBCT scan and manual verification). In the LAT (left/right), VRT (superior/inferior) and LNG (anterior/posterior) directions, laser line-guided setup errors (mean±SD) were -0.21±3.13mm, 1.02±2.76mm and 2.22±4.26mm respectively; the 95% confidence intervals (95% CIs) of laser line-guided setup errors were -6.35 to 5.93mm, -4.39 to 6.43mm and -6.14 to 10.58mm respectively; S-M_OPS-guided setup errors were 0.12±1.91mm, 1.02±1.81mm and -0.10±2.25mm respectively; the 95% CIs of S-M_OPS-guided setup errors were -3.86 to 3.62mm, -2.53 to 4.57mm and -4.51 to 4.31mm respectively. Conclusion S-M_OPS can greatly improve setup accuracy and stability compared with laser line-guided setup. Furthermore, S-M_OPS can provide comparable setup accuracy to CBCT in less setup time.
Collapse
Affiliation(s)
- Yan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Han Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Kaiyue Chu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Chuanfeng Wu
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Yun Ge
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Guoping Shan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Jundong Zhou
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Jing Cai
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Jianhua Jin
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Weiyu Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaolin Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Perrett B, Ukath J, Horgan E, Noble C, Ramachandran P. A Framework for ExacTrac Dynamic Commissioning for Stereotactic Radiosurgery and Stereotactic Ablative Radiotherapy. J Med Phys 2022; 47:398-408. [PMID: 36908493 PMCID: PMC9997535 DOI: 10.4103/jmp.jmp_67_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
This paper aims to provide guidance and a framework for commissioning tests and tolerances for the ExacTrac Dynamic image-guided and surface-guided radiotherapy (SGRT) system. ExacTrac Dynamic includes a stereoscopic X-ray system, a structured light projector, stereoscopic cameras, thermal camera for SGRT, and has the capability to track breath holds and internal markers. The system provides fast and accurate image guidance and intrafraction guidance for stereotactic radiosurgery and stereotactic ablative radiotherapy. ExacTrac Dynamic was commissioned on a recently installed Elekta Versa HD. Commissioning tests are described including safety, isocenter calibration, dosimetry, image quality, data transfer, SGRT stability, SGRT localization, gating, fusion, implanted markers, breath hold, and end-to-end testing. Custom phantom designs have been implemented for assessment of the deep inspiration breath-hold workflow, the implanted markers workflow, and for gating tests where remote-controlled movement of a phantom is required. Commissioning tests were all found to be in tolerance, with maximum translational and rotational deviations in SGRT of 0.3 mm and 0.4°, respectively, and X-ray image fusion reproducibility standard deviation of 0.08 mm. Tolerances were based on published documents and upon the performance characteristics of the system as specified by the vendor. The unique configuration of ExacTrac Dynamic requires the end user to design commissioning tests that validate the system for use in the clinical implementation adopted in the department. As there are multiple customizable workflows available, tests should be designed around these workflows, and can be ongoing as workflows are progressively introduced into departmental procedures.
Collapse
Affiliation(s)
- Ben Perrett
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jaysree Ukath
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Emma Horgan
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Chris Noble
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Prabhakar Ramachandran
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
25
|
Da Silva Mendes V, Reiner M, Huang L, Reitz D, Straub K, Corradini S, Niyazi M, Belka C, Kurz C, Landry G, Freislederer P. ExacTrac Dynamic workflow evaluation: Combined surface optical/thermal imaging and X-ray positioning. J Appl Clin Med Phys 2022; 23:e13754. [PMID: 36001389 DOI: 10.1002/acm2.13754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment. The surface optical/thermal- and the stereoscopic X-ray imaging positioning systems of EXTD was evaluated and compared to cone-beam computed tomography (CBCT). Additionally, the congruence with the radiation isocenter was tested. A Winston Lutz test was executed several times over 1 year, and repeated end-to-end positioning tests were performed. The magnitude of the displacements between all systems, CBCT, stereoscopic X-ray, optical-surface imaging, and MV portal imaging was within the submillimeter range, suggesting that the image guidance provided by EXTD is accurate at any couch angle. Additionally, results from the evaluation of 14 patients with intracranial tumors treated with open-face masks are reported, and limited differences with a maximum of 0.02 mm between optical/thermal- and stereoscopic X-ray imaging were found. As the optical/thermal positioning system showed a comparable accuracy to other IGRT systems, and due to its constant monitoring capability, it can be an efficient tool for detecting intra-fractional motion and for real-time tracking of the surface position during RT.
Collapse
Affiliation(s)
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lili Huang
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Katrin Straub
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
27
|
Batista V, Gober M, Moura F, Webster A, Oellers M, Ramtohul M, Kügele M, Freislederer P, Buschmann M, Anastasi G, Steiner E, Al-Hallaq H, Lehmann J. Surface guided radiation therapy: An international survey on current clinical practice. Tech Innov Patient Support Radiat Oncol 2022; 22:1-8. [PMID: 35402740 PMCID: PMC8984757 DOI: 10.1016/j.tipsro.2022.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction Surface Guided Radiation Therapy (SGRT) is being increasingly implemented into clinical practice across a number of techniques and irradiation-sites. This technology, which is provided by different vendors, can be used with most simulation- and delivery-systems. However, limited guidelines and the complexity of clinical settings have led to diverse patterns of operation. With the aim to understand current clinical practice a survey was designed focusing on specifics of the clinical implementation and usage. Materials and methods A 32-question survey covered: type and number of systems, quality assurance (QA), clinical workflows, and identification of strengths/limitations. Respondents from different professional groups and countries were invited to participate. The survey was distributed internationally via ESTRO-membership, social media and vendors. Results Of the 278 institutions responding, 172 had at least one SGRT-system and 136 use SGRT clinically. Implementation and QA were primarily based on the vendors' recommendations and phantoms. SGRT was mainly implemented in breast RT (116/136), with strong but diverse representation of other sites. Many (58/135) reported at least partial elimination of skin-marks and a third (43/126) used open-masks. The most common imaging protocol reported included the combination of radiographic imaging with SGRT. Patient positioning (115/136), motion management (104/136) and DIBH (99/136) were the main applications.Main barriers to broader application were cost, system integration issues and lack of demonstrated clinical value. A lack of guidelines in terms of QA of the system was highlighted. Conclusions This overview of the SGRT status has the potential to support users, vendors and organisations in the development of practices, products and guidelines.
Collapse
Affiliation(s)
- V Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - M Gober
- Department of Radiation Oncology, Medical University of Vienna, Austria.,Institute for Radiation Oncology and Radiotherapy, Landesklinikum Wiener Neustadt, Austria
| | - F Moura
- Hospital CUF Descobertas, Department of Radiation Oncology, Lisbon, Portugal
| | - A Webster
- Radiotherapy and Proton Beam Therapy, University College Hospital, London, United Kingdom
| | - M Oellers
- MAASTRO Clinic, Department of Medical Physics, Maastricht, the Netherlands
| | - M Ramtohul
- Department of Medical Physics, Queen Elizabeth Hospital, University Hospitals Birmingham
| | - M Kügele
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - P Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - M Buschmann
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - G Anastasi
- St. Luke's Cancer Centre, Royal Surrey Foundation Trust, Radiotherapy Physics, United Kingdom
| | - E Steiner
- Institute for Radiation Oncology and Radiotherapy, Landesklinikum Wiener Neustadt, Austria
| | - H Al-Hallaq
- Department of Radiation and Cellular Oncology, University of Chicago, USA
| | - J Lehmann
- Radiation Oncology Department, Calvary Mater Newcastle, Australia.,School of Information and Physical Sciences, University of Newcastle, Callaghan, Australia.,Institute of Medical Physics, University of Sydney, Australia
| |
Collapse
|
28
|
Freislederer P, Batista V, Öllers M, Buschmann M, Steiner E, Kügele M, Fracchiolla F, Corradini S, de Smet M, Moura F, Perryck S, Dionisi F, Nguyen D, Bert C, Lehmann J. ESTRO-ACROP guideline on surface guided radiation therapy. Radiother Oncol 2022; 173:188-196. [PMID: 35661677 DOI: 10.1016/j.radonc.2022.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Surface guidance systems enable patient positioning and motion monitoring without using ionising radiation. Surface Guided Radiation Therapy (SGRT) has therefore been widely adopted in radiation therapy in recent years, but guidelines on workflows and specific quality assurance (QA) are lacking. This ESTRO-ACROP guideline aims to give recommendations concerning SGRT roles and responsibilities and highlights common challenges and potential errors. Comprehensive guidelines for procurement, acceptance, commissioning, and QA of SGRT systems installed on computed tomography (CT) simulators, C-arm linacs, closed-bore linacs, and particle therapy treatment systems are presented that will help move to a consensus among SGRT users and facilitate a safe and efficient implementation and clinical application of SGRT.
Collapse
Affiliation(s)
- P Freislederer
- Department of Radiation Oncology, LMU University Hospital, Munich, Germany.
| | - V Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - M Öllers
- Department of Radiotherapy, MAASTRO, Maastricht, The Netherlands
| | - M Buschmann
- Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Austria
| | - E Steiner
- Institute for Radiation Oncology and Radiotherapy, Landesklinikum Wiener Neustadt, Austria
| | - M Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - F Fracchiolla
- Azienda Provinciale per i Servizi Sanitari (APSS) Protontherapy Department, Trento, Italy
| | - S Corradini
- Department of Radiation Oncology, LMU University Hospital, Munich, Germany
| | - M de Smet
- Department of Medical Physics & Instrumentation, Institute Verbeeten, Tilburg, The Netherlands
| | - F Moura
- Hospital CUF Descobertas, Department of Radiation Oncology, Lisbon, Portugal
| | - S Perryck
- Department of Radiation Oncology, University Hospital Zürich, Switzerland
| | - F Dionisi
- Department of Radiation Oncology, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - D Nguyen
- Centre de Radiothérapie de Mâcon, France
| | - C Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - J Lehmann
- Radiation Oncology Department, Calvary Mater Newcastle, Australia; School of Information and Physical Sciences, University of Newcastle, Australia; Institute of Medical Physics, University of Sydney, Australia
| |
Collapse
|
29
|
Saito M, Ueda K, Suzuki H, Komiyama T, Marino K, Aoki S, Sano N, Onishi H. Evaluation of the detection accuracy of set-up for various treatment sites using surface-guided radiotherapy system, VOXELAN: a phantom study. JOURNAL OF RADIATION RESEARCH 2022; 63:435-442. [PMID: 35467750 PMCID: PMC9124621 DOI: 10.1093/jrr/rrac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The purpose of this study is to evaluate the detection accuracy of a 3-dimensional (3D) body scanner, VOXELAN, in surface-guided radiotherapy (SGRT) of each part of the human body using a whole-body human phantom. We used A Resusci Anne was used as the whole-body phantom. The detection accuracy of VOXELAN in a radiotherapy treatment room with a linear accelerator (LINAC) was evaluated for two reference images: reconstruction of the planning computed tomography (CT) image (CT reference) and scanning by VOXELAN before the treatment (scan reference). The accuracy of the translational and rotational directions was verified for four treatment sites (open face shell, breast, abdomen, and arm), using the magnitude of the 6D robotic couch movement as the true value. Our results showed that the detection accuracy improved as the displacement from the reference position decreased for all the sites. Using the scan reference, the average accuracy of the translational and rotational axes was within 1.44 mm and 0.41°, respectively, for all sites except the arms. Similarly, using the CT reference, the average accuracy was within 2.45 mm and 1.35°, respectively. Additionally, it was difficult for both reference images to recognize misalignment of the arms. In conclusion we discovered that VOXELAN achieved a high detection accuracy for the head with an open face shell, chest, and abdomen, indicating that the system is useful in a clinical setting. However, it is necessary to pay attention to location matching for areas with few features, such as surface irregularities and potential errors, when the reference image is created from CT.
Collapse
Affiliation(s)
- Masahide Saito
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Koji Ueda
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hidekazu Suzuki
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Takafumi Komiyama
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kan Marino
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Shinichi Aoki
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naoki Sano
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
30
|
A novel end-to-end test for combined dosimetric and geometric treatment verification using a 3D-printed phantom. Med Dosim 2022; 47:177-183. [DOI: 10.1016/j.meddos.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
|
31
|
Lehmann J, Standen TS, Kaur G, Wolf J, Wilfert A, Simpson J. Methodology of thermal drift measurements for surface guided radiation therapy systems and clinical impact assessment illustrated on the C-Rad Catalyst + HD system. Tech Innov Patient Support Radiat Oncol 2022; 21:58-63. [PMID: 35243046 PMCID: PMC8885575 DOI: 10.1016/j.tipsro.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Thermal drift of optical systems employed for surface guided radiation therapy (SGRT) adds uncertainty to patient setup and monitoring. This work describes methods to measure the drift of individual camera pods as well as the drift of the combined clinical signal. It presents results for four clinical C-Rad Catalyst+ HD systems. Based on the measured clinical drift, recipes are provided on how to calculate relevant uncertainties in patient setup and patient position monitoring with SGRT. Strategies to reduce the impact of drift are explained. While the results are specific to the systems investigated, the methodology is transferable and the clinical recipes are universally applicable.
Collapse
Affiliation(s)
- Joerg Lehmann
- Calvary Mater Newcastle, Newcastle, Australia
- University of Newcastle, Newcastle, Australia
- University of Sydney, Sydney, Australia
| | | | - Guneet Kaur
- Calvary Mater Newcastle, Newcastle, Australia
| | - Joshua Wolf
- Calvary Mater Newcastle, Newcastle, Australia
| | | | | |
Collapse
|
32
|
Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, Padilla L, Pawlicki T, Remmes N, Smith K, Tang X, Tomé WA. AAPM task group report 302: Surface guided radiotherapy. Med Phys 2022; 49:e82-e112. [PMID: 35179229 PMCID: PMC9314008 DOI: 10.1002/mp.15532] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 02/05/2022] [Indexed: 11/06/2022] Open
Abstract
The clinical use of surface imaging has increased dramatically with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath-hold (DIBH) treatment, and frameless stereotactic radiosurgery (SRS). Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography (CT) simulation, including motion management are also discussed. Finally, developing clinical applications such as stereotactic body radiotherapy (SBRT) or proton radiotherapy are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing. Review current use of non-ionizing surface imaging functionality and commercially available systems. Summarize commissioning and on-going quality assurance (QA) requirements of surface image-guided systems, including implementation of risk or hazard assessment of surface guided radiotherapy as a part of a total quality management program (e.g., TG-100). Provide clinically relevant technical guidelines that include recommendations for the use of SGRT for general patient positioning, breast DIBH, and frameless brain SRS, including potential pitfalls to avoid when implementing this technology. Discuss emerging clinical applications of SGRT and associated QA implications based on evaluation of technology and risk assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hania A Al-Hallaq
- Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, 33173, USA
| | | | - Susan A Higgins
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Malin Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University, Lund, 221 00, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, 221 00, Sweden
| | - Laura Padilla
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd Pawlicki
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicholas Remmes
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Koren Smith
- IROC Rhode Island, University of Massachusetts Chan Medical School, Lincoln, RI, 02865, USA
| | | | - Wolfgang A Tomé
- Department of Radiation Oncology and Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
33
|
Bright M, Foster RD, Hampton CJ, Ruiz J, Moeller B. Failure modes and effects analysis for surface-guided DIBH breast radiotherapy. J Appl Clin Med Phys 2022; 23:e13541. [PMID: 35112445 PMCID: PMC8992938 DOI: 10.1002/acm2.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Despite breast cancer prevalence and widespread adoption of deep inspiration breath‐hold (DIBH) radiation techniques, few data exist on the error risks related to using surface‐guided (SG) DIBH during breast radiation therapy (RT). Due to the increasingly technical nature of these methods and being a paradigm shift from traditional breast setups/treatments, the associated risk for error is high. Failure modes and effects analysis (FMEA) has been used in identifying risky RT processes yet is time‐consuming to perform. A subset of RT staff and a hospital patient‐safety representative performed FMEA to study SG‐DIBH RT processes. After this group (cohort 1) analyzed these processes, additional scoring data were acquired from RT staff uninvolved in the original FMEA (cohort 2). Cohort 2 received abbreviated FMEA training while using the same process maps that cohort 1 had created, which was done with the goal of validating our results and exploring the feasibility of expedited FMEA training and efficient implementation elsewhere. An extensive review of the SG‐DIBH RT process revealed 57 failure modes in 16 distinct steps. Risks deemed to have the highest priority, large risk priority number (RPN), and severity were addressed with policy changes, checklists, and standardization; of these, most were linked with operator error via manual inputs and verification. Reproducibility results showed that 5% of the average RPN between cohorts 1 and 2 was statistically different. Unexpected associations were noted between RPN and RT staff role; 12% of the physicist and therapist average scores were statistically different. Different levels of FMEA training yielded similar scoring within one RT department, suggesting a time‐savings can be achieved with abbreviated training. Scores between professions, however, yielded significant differences suggesting the importance of involving staff across disciplines.
Collapse
Affiliation(s)
- Megan Bright
- Levine Cancer Institute, Department of Radiation Oncology, Atrium Health Cabarrus, Concord, North Carolina, USA
| | - Ryan D Foster
- Levine Cancer Institute, Department of Radiation Oncology, Atrium Health Cabarrus, Concord, North Carolina, USA
| | - Carnell J Hampton
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Justin Ruiz
- Levine Cancer Institute, Department of Radiation Oncology, Atrium Health Cabarrus, Concord, North Carolina, USA
| | - Benjamin Moeller
- Levine Cancer Institute, Department of Radiation Oncology, Atrium Health Cabarrus, Concord, North Carolina, USA
| |
Collapse
|
34
|
Fattori G, Hrbacek J, Regele H, Bula C, Mayor A, Danuser S, Oxley DC, Rechsteiner U, Grossmann M, Via R, Böhlen TT, Bolsi A, Walser M, Togno M, Colvill E, Lempen D, Weber DC, Lomax AJ, Safai S. Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers. Z Med Phys 2022; 32:52-62. [PMID: 32830006 PMCID: PMC9948868 DOI: 10.1016/j.zemedi.2020.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
We present the commissioning and quality assurance of our clinical protocol for respiratory gating in pencil beam scanning proton therapy for cancer patients with moving targets. In a novel approach, optical tracking has been integrated in the therapy workflow and used to monitor respiratory motion from multiple surrogates, applied on the patients' chest. The gating system was tested under a variety of experimental conditions, specific to proton therapy, to evaluate reaction time and reproducibility of dose delivery control. The system proved to be precise in the application of beam gating and allowed the mitigation of dose distortions even for large (1.4cm) motion amplitudes, provided that adequate treatment windows were selected. The total delivered dose was not affected by the use of gating, with measured integral error within 0.15cGy. Analysing high-resolution images of proton transmission, we observed negligible discrepancies in the geometric location of the dose as a function of the treatment window, with gamma pass rate greater than 95% (2%/2mm) compared to stationary conditions. Similarly, pass rate for the latter metric at the 3%/3mm level was observed above 97% for clinical treatment fields, limiting residual movement to 3mm at end-exhale. These results were confirmed in realistic clinical conditions using an anthropomorphic breathing phantom, reporting a similarly high 3%/3mm pass rate, above 98% and 94%, for regular and irregular breathing, respectively. Finally, early results from periodic QA tests of the optical tracker have shown a reliable system, with small variance observed in static and dynamic measurements.
Collapse
Affiliation(s)
- Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| | - Jan Hrbacek
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Harald Regele
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Christian Bula
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alexandre Mayor
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Stefan Danuser
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David C Oxley
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Urs Rechsteiner
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Grossmann
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Riccardo Via
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Till T Böhlen
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Emma Colvill
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Daniel Lempen
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland; Department of Radiation Oncology, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Radiation Oncology, University Hospital Bern, 3000 Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland; Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
35
|
Li G, Lu W, O'Grady K, Yan I, Yorke E, Arriba LIC, Powell S, Hong L. A uniform and versatile surface‐guided radiotherapy procedure and workflow for high‐quality breast deep‐inspiration breath‐hold treatment in a multi‐center institution. J Appl Clin Med Phys 2022; 23:e13511. [PMID: 35049108 PMCID: PMC8906224 DOI: 10.1002/acm2.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/21/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose We share our experiences on uniformly implementing an effective and efficient SGRT procedure with a new clinical workflow for treating breast patients in deep‐inspiration breath‐hold (DIBH) among 9 clinical centers using 26 optical surface imaging (OSI) systems. Methods Our procedures have five major components: (1) acquiring both free‐breathing (FB) and DIBH computed tomography (CT) at simulation to quantify the rise of the anterior surface, (2) defining uniformly a large region of interest (ROI) to accommodate large variations in patient anatomy and treatment techniques, (3) performing two‐step setup in FB by first aligning the arm and chin to minimize breast deformation and reproduce local lymphnode positions and then aligning the ROI, (4) aligning the vertical shift precisely from FB to DIBH, and (5) capturing a new on‐site reference image at DIBH to separate residual setup errors from the DIBH motion monitoring uncertainties. Moreover, a new clinical workflow was developed for patient data preparation using 4 OSI offline workstations without interruption of SGRT treatment at 22 OSI online workstations. This procedure/workflow is suitable for all photon planning techniques, including 2‐field, 3‐field, 4‐field, partial breast irradiation (PBI), and volumetric‐modulated arc therapy (VMAT) with or without bolus. Results Since 2019, we have developed and applied the uniform breast SGRT DIBH procedure with optimized clinical workflow and ensured treatment accuracy among the nine clinics within our institution. About 150 breast DIBH patients are treated daily and two major upgrades are achieved smoothly throughout our institution, owing to the uniform and versatile procedure, adequate staff training, and efficient workflow with effective clinical supports and backup strategies. Conclusion The uniform and versatile breast SGRT DIBH procedure and workflow have been developed to ensure smooth and optimal clinical operations, simplify clinical staff training and clinical troubleshooting, and allow high‐quality SGRT delivery in a busy multi‐center institution.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Wei Lu
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Kyle O'Grady
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Iris Yan
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Ellen Yorke
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Laura I Cervino Arriba
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Simon Powell
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Linda Hong
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
36
|
Lee H, Park JM, Kim KH, Lee DH, Sohn MJ. Accuracy evaluation of surface registration algorithm using normal distribution transform in stereotactic body radiotherapy/radiosurgery: A phantom study. J Appl Clin Med Phys 2022; 23:e13521. [PMID: 34985179 PMCID: PMC8906233 DOI: 10.1002/acm2.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate a feasibility of normal distribution transform (NDT) algorithm compared with the iterative closest point (ICP) method as a useful surface registration in stereotactic body radiotherapy (SBRT)/stereotactic radiosurgery (SRS). METHODS Point cloud images using the 3D triangulation technology were obtained from a depth camera-based optical imaging (OSI) system equipped in a radiosurgery room. Two surface registration algorithms, NDT and ICP, were used to measure and compare the discrepancy values between the reference and the current surfaces during the positioning of the patient. The performance evaluation was investigated by calculating the registration error and root-mean-square (RMS) values for the surface model, reposition, and target accuracy, which were analyzed statistically using a paired t-test. RESULTS For surface model accuracy, the average of the registration error and RMS values were measured as 3.56 ± 2.20 mm and 6.98 ± 1.89 mm for ICP method, and 1.76 ± 1.32 mm and 3.58 ± 1.30 mm for NDT method (p < 0.05). For reposition accuracy, the average registration error and RMS values were calculated as 1.41 ± 0.98 mm and 2.53 ± 1.64 mm using ICP method, and 0.92 ± 0.61 mm and 1.75 ± 0.80 mm using NDT method (p = 0.005). The overall target accuracy using the NDT method reduced the average of the reposition error and overall RMS value by 0.71 and 1.32 mm, respectively, compared to the ICP method (p = 0.03). CONCLUSIONS We found that the surface registration algorithm based on NDT method provides more reliable accuracy in the values of surface model, reposition, and target accuracies than the classic ICP method. The NDT method in OSI systems offers reasonable accuracy in SBRT/SRS.
Collapse
Affiliation(s)
- Haenghwa Lee
- Department of Neurosurgery, Neuroscience, & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Goyang, Republic of Korea
| | - Jeong-Mee Park
- Department of Neurosurgery, Neuroscience, & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Goyang, Republic of Korea
| | - Kwang Hyeon Kim
- Department of Neurosurgery, Neuroscience, & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Goyang, Republic of Korea
| | - Dong-Hoon Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Moon-Jun Sohn
- Department of Neurosurgery, Neuroscience, & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Goyang, Republic of Korea
| |
Collapse
|
37
|
Goddard L, Jeong K, Tomé WA. Commissioning and routine quality assurance of the radixact synchrony system. Med Phys 2021; 49:1181-1195. [PMID: 34914846 DOI: 10.1002/mp.15410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Radixact Synchrony system allows for target motion correction when tracking either fiducials in/around the target or a dense lesion in the lung. As such evaluation testing and Quality Assurance (QA) tests are required. METHODS To allow for QA procedures to be performed with a range of available phantoms evaluation of the dosimetric delivery accuracy was performed for a range of motions, phantoms and motion platforms. A CIRS 1D motion platform and Accuray Tomotherapy "cheese" phantom was utilized to perform absolute dose and EBT3 film measurements. A HexaMotion platform and Delta4 phantom were utilized to quantify the effects of 1D and 3D motions. Inter-device comparison was performed with the ArcCHECK and Delta4 phantoms and GafChromic film, five patient plans were delivered to each phantom when static and with two different motion types both with and without Synchrony motion correction. RESULTS A range of QA tests are described. A phantom was designed to allow for daily verification of system functionality. This test allows for detection of either fiducials or a dense silicone target with a stationary phantom. Monthly testing procedures are described that allow the user to verify the dosimetric improvement when utilizing synchrony delivery motion compensation vs. uncorrected motions. These can be performed utilizing a 1D motion stage with an ion-chamber and GafChromic film to allow for a 2D dosimetric validation. Alternatively, a 3D motion platform can be utilized where available. Monthly and annual imaging tests are described. Finally, annual test procedures designed to verify the coincidence of the imaging system and treatment isocenter are described. Evaluation of the Synchrony system using a range of QA devices shows consistently high dosimetric accuracy with similar trends in passing criteria found with GafChromic film, ArcCHECK and Delta4 phantoms for density based respiratory model compensation. CONCLUSION These results highlight the large improvements in the dose distribution when motion is accounted for with the Synchrony system as measured with a range of phantoms and motion platforms that the majority of users will have available. The testing methods and QA procedures described provide guidance for new users of the Radixact Synchrony system as they implement their own quality assurance programs for this system, until such time as an AAPM task group report is made available. QA procedures including kV imaging quality metrics and imaging dose parameters, dose deposition accuracy, target detection coincidence and target position detection accuracy are described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lee Goddard
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kyoungkeun Jeong
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
38
|
de Crevoisier R, Lafond C, Mervoyer A, Hulot C, Jaksic N, Bessières I, Delpon G. Image-guided radiotherapy. Cancer Radiother 2021; 26:34-49. [PMID: 34953701 DOI: 10.1016/j.canrad.2021.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present the updated recommendations of the French society for oncological radiotherapy on image-guided radiotherapy (IGRT). The objective of the IGRT is to take into account the anatomical variations of the target volume occurring between or during the irradiation fractions, such as displacements and/or deformations, so that the delivered dose corresponds to the planned dose. This article presents the different IGRT devices, their use and quality control, and quantify the possible additional dose generated by each of them. The practical implementation of IGRT in various tumour locations is summarised, from the different "RecoRad™" guideline articles. Adaptive radiotherapy is then detailed, due to its complexity and its probable development in the next years. The place of radiation technologist in the practice of IGRT is then specified. Finally, a brief update is proposed on the delicate question of the additional dose linked to the in-room imaging, which must be estimated and documented at a minimum, as long as it is difficult to integrate it into the calculation of the dose distribution.
Collapse
Affiliation(s)
- R de Crevoisier
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France.
| | - C Lafond
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - A Mervoyer
- Radiotherapy department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France; Medical physics department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France
| | - C Hulot
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - N Jaksic
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - I Bessières
- Medical physics department, centre Georges-François Leclerc, rue du Professeur-Marion, 21000 Dijon, France
| | - G Delpon
- Radiotherapy department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France; Medical physics department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France
| |
Collapse
|
39
|
Piperdi H, Portal D, Neibart SS, Yue NJ, Jabbour SK, Reyhan M. Adaptive Radiation Therapy in the Treatment of Lung Cancer: An Overview of the Current State of the Field. Front Oncol 2021; 11:770382. [PMID: 34912715 PMCID: PMC8666420 DOI: 10.3389/fonc.2021.770382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer treatment is constantly evolving due to technological advances in the delivery of radiation therapy. Adaptive radiation therapy (ART) allows for modification of a treatment plan with the goal of improving the dose distribution to the patient due to anatomic or physiologic deviations from the initial simulation. The implementation of ART for lung cancer is widely varied with limited consensus on who to adapt, when to adapt, how to adapt, and what the actual benefits of adaptation are. ART for lung cancer presents significant challenges due to the nature of the moving target, tumor shrinkage, and complex dose accumulation because of plan adaptation. This article presents an overview of the current state of the field in ART for lung cancer, specifically, probing topics of: patient selection for the greatest benefit from adaptation, models which predict who and when to adapt plans, best timing for plan adaptation, optimized workflows for implementing ART including alternatives to re-simulation, the best radiation techniques for ART including magnetic resonance guided treatment, algorithms and quality assurance, and challenges and techniques for dose reconstruction. To date, the clinical workflow burden of ART is one of the major reasons limiting its widespread acceptance. However, the growing body of evidence demonstrates overwhelming support for reduced toxicity while improving tumor dose coverage by adapting plans mid-treatment, but this is offset by the limited knowledge about tumor control. Progress made in predictive modeling of on-treatment tumor shrinkage and toxicity, optimizing the timing of adaptation of the plan during the course of treatment, creating optimal workflows to minimize staffing burden, and utilizing deformable image registration represent ways the field is moving toward a more uniform implementation of ART.
Collapse
Affiliation(s)
- Huzaifa Piperdi
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Daniella Portal
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State of New Jersey University, Piscataway, NJ, United States
| | - Shane S. Neibart
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State of New Jersey University, Piscataway, NJ, United States
| | - Ning J. Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Salma K. Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State of New Jersey University, Piscataway, NJ, United States
| | - Meral Reyhan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
40
|
Nazir S, Bert J, Fayad H, Visvikis D. Surface imaging for real-time patient positioning in external radiation therapy. Med Phys 2021; 48:8037-8044. [PMID: 34669989 DOI: 10.1002/mp.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In the last few years, there has been a growing interest in surface imaging for patient positioning in external radiation therapy. The aim of this study is to evaluate the accuracy of daily patient positioning using the Azure Kinect surface imaging. METHODS A total of 50 fractions in 10 patients including lung, pelvic, and head and neck tumors were analyzed in real time. A rigid registration algorithm, based on the iterative closest point (ICP) approach, is employed to estimate the patient position in 6 degrees of freedom (DOF). This position is compared to the reference values obtained by the radiograph imaging. The mean setup error and its standard deviation were calculated for all measured fractions. RESULTS The positioning error showed 1.1 ± 1.1 mm in lateral, 1.8 ± 2.1 mm in longitudinal, and 0.8 ± 1.1 mm in vertical, and 0.3°± 0.4° in yaw, 0.2°± 0.2° in pitch, and 0.2°± 0.2° in roll directions. The larger setup error occurred in pelvic regions. CONCLUSION We have evaluated in a radiotherapy set-up considering different patient anatomical locations, a depth measurement based surface imaging solution for patient positioning considering the 6 DOF couch motion. We showed that the proposed solution allows an accurate patient positioning without the need for patient markings or the use of additional radiation dose.
Collapse
Affiliation(s)
- Souha Nazir
- INSERM, UMR1101, LaTIM, University of Brest, Brest, France
| | - Julien Bert
- INSERM, UMR1101, LaTIM, University of Brest, Brest, France
| | - Hadi Fayad
- Hamad Medical Corporation OHS, PET/CT Center, Doha, Qatar
| | | |
Collapse
|
41
|
Chalkia M, Kouloulias V, Tousoulis D, Deftereos S, Tsiachris D, Vrachatis D, Platoni K. Stereotactic Arrhythmia Radioablation as a Novel Treatment Approach for Cardiac Arrhythmias: Facts and Limitations. Biomedicines 2021; 9:1461. [PMID: 34680578 PMCID: PMC8533522 DOI: 10.3390/biomedicines9101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is highly focused radiation therapy that targets well-demarcated, limited-volume malignant or benign tumors with high accuracy and precision using image guidance. Stereotactic arrhythmia radioablation (STAR) applies SABR to treat cardiac arrhythmias, including ventricular tachycardia (VT) and atrial fibrillation (AF), and has recently been a focus in research. Clinical studies have demonstrated electrophysiologic conduction blockade and histologic fibrosis after STAR, which provides a proof of principle for its potential for treating arrhythmias. This review will present the basic STAR principles, available clinical study outcomes, and how the technique has evolved since the first pre-clinical study. In addition to the clinical workflow, focus will be given on the process for stereotactic radiotherapy Quality Assurance (QA) tests, as well as the need for establishing a standardized QA protocol. Future implications and potential courses of research will also be discussed.
Collapse
Affiliation(s)
- Marina Chalkia
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Vassilis Kouloulias
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Dimitris Tousoulis
- First Department of Cardiology, ‘Hippokration’ General Hospital, Vasilissis Sofias 114, 115 27 Athens, Greece;
| | - Spyridon Deftereos
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | | | - Dimitrios Vrachatis
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | - Kalliopi Platoni
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| |
Collapse
|
42
|
Naim A, Mansouri S, Saidi K, ELBaydaoui R, Mesradi MR. Innovative Non-Irradiating and Non-Invasive Per Fraction Control System in Radiotherapy: Surface-Guided Radiation Therapy Experience of Casablanca Cancer Center. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose: Evaluation of the added value of radiotherapy guided by the cutaneous
surface in the positioning and monitoring of the radiotherapy
Patients and Methods: This study included 21 consecutive patients treated with an
accelerator dedicated to "True Beam®" stereotactic radiotherapy whose sessions were
monitored by an Optical Surface Monitoring System: "OSMS®". Excluded from our
study were treatments controlled exclusively by radiological imaging (IGRT).
Positioning variabilities were compared between conventional imaging and skin
surface infrared (OSMS) monitoring. Conventional imaging was in the form of
standard radiography (KV) performed during the treatment session or three-
dimensional by a series of Cone Beam computerized tomography (CBCT) scanned
images made at the beginning and end of The total time of the session and
the positioning variability’s in the 3 planes were
14
Results: The results of our study show that the cutaneous surface monitoring allowed
to obtain a faster alignment of the patient with an improvement in the overall time of
the session with a mean at 32% [14.5-49.27%], likewise a sub-millimeter positioning
quality for all locations with a median longitudinal distance of 0.02 cm [0-0.66], 01
cm verticality [0-0.32] and laterality 0.02 cm [0-0.77] This benefit is significantly
greater for cerebral and Head and neck’s localizations
21
Conclusion: Optical Surface Monitoring System (OSMS®) is a non-invasive and non-
irradiating means that allows reliable and fast
Collapse
|
43
|
McGee KP, Tyagi N, Bayouth JE, Cao M, Fallone BG, Glide‐Hurst CK, Goerner FL, Green OL, Kim T, Paulson ES, Yanasak NE, Jackson EF, Goodwin JH, Dieterich S, Jordan DW, Hugo GD, Bernstein MA, Balter JM, Kanal KM, Hazle JD, Pelc NJ. Findings of the AAPM Ad Hoc committee on magnetic resonance imaging in radiation therapy: Unmet needs, opportunities, and recommendations. Med Phys 2021; 48:4523-4531. [PMID: 34231224 PMCID: PMC8457147 DOI: 10.1002/mp.14996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023] Open
Abstract
The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend. As MR imaging in RT techniques and technologies, such as MRgRT, gain regulatory approval worldwide, these systems will begin to propagate beyond tertiary care academic medical centers and into more community-based health systems and hospitals, creating new opportunities to provide advanced treatment options to a broader patient population. Accompanying these opportunities are unique challenges related to their adaptation, adoption, and use including modification of hardware and software to meet the unique and distinct demands of MR imaging in RT, the need for standardization of imaging techniques and protocols, education of the broader RT community (particularly in regards to MR safety) as well as the need to continue and support research, and development in this space. In response to this, an ad hoc committee of the American Association of Physicists in Medicine (AAPM) was formed to identify the unmet needs, roadblocks, and opportunities within this space. The purpose of this document is to report on the major findings and recommendations identified. Importantly, the provided recommendations represent the consensus opinions of the committee's membership, which were submitted in the committee's report to the AAPM Board of Directors. In addition, AAPM ad hoc committee reports differ from AAPM task group reports in that ad hoc committee reports are neither reviewed nor ultimately approved by the committee's parent groups, including at the council and executive committee level. Thus, the recommendations given in this summary should not be construed as being endorsed by or official recommendations from the AAPM.
Collapse
Affiliation(s)
- Kiaran P. McGee
- Department of RadiologyMayo ClinicRochesterMinnesota55905USA
| | - Neelam Tyagi
- Department of Medical PhysicsMemorial Sloan‐Kettering Cancer CenterNew YorkNew York10065USA
| | - John E. Bayouth
- Department of Radiation OncologyUniversity of WisconsinMadisonWisconsin53792‐0600USA
| | - Minsong Cao
- Department of Radiation OncologyUniversity of California, Los AngelesLos AngelesCalifornia90095‐6951USA
| | - B. Gino Fallone
- Department of Medical PhysicsCross Cancer InstituteEdmontonAlbertaAB T6G 1Z2Canada
| | | | - Frank L. Goerner
- Department of Radiology/Radiological SciencesQueen's Medical CenterHonoluluHI96813USA
| | - Olga L. Green
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO63110USA
| | - Taeho Kim
- Department of Radiation OncologyVirginia Commonwealth UniversityGlen AllenVA23059USA
| | - Eric S. Paulson
- Department of Radiation OncologyMedical College of WisconsinMilwaukeeWisconsin53226USA
| | | | - Edward F. Jackson
- Department of Imaging PhysicsUniversity of WisconsinMadisonWI53705USA
| | - James H. Goodwin
- Department of Medical PhysicsUniversity of Vermont Medical CenterBurlingtonVT05401USA
| | - Sonja Dieterich
- Department of Radiation OncologyUC Davis Medical CenterSacramentoCalifornia95817USA
| | - David W. Jordan
- Department of RadiologyUniversity Hospitals Cleveland Medical CenterClevelandOhio44106USA
| | - Geoffrey D. Hugo
- Department of Radiation OncologyWashington University St LouisRichmondVA23298‐0058USA
| | | | - James M. Balter
- Department of Radiation OncologyUniversity of MichiganAnn ArborMI48109USA
| | - Kalpana M. Kanal
- Department of RadiologyUniversity of WashingtonSeattleWA98195‐7987USA
| | - John D. Hazle
- Department of Imaging PhysicsUT MD Anderson Cancer CenterHoustonTX77030‐4095USA
| | - Norbert J. Pelc
- Department of Radiology/Radiological SciencesStanford UniversityStanfordCA94305‐4245USA
| |
Collapse
|
44
|
MacFarlane MJ, Jiang K, Mundis M, Nichols E, Gopal A, Chen S, Biswal NC. Comparison of the dosimetric accuracy of proton breast treatment plans delivered with SGRT and CBCT setups. J Appl Clin Med Phys 2021; 22:153-158. [PMID: 34288378 PMCID: PMC8425866 DOI: 10.1002/acm2.13357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To compare the dosimetric accuracy of surface-guided radiation therapy (SGRT) and cone-beam computed tomography (CBCT) setups in proton breast treatment plans. METHODS Data from 30 patients were retrospectively analyzed in this IRB-approved study. Patients were prescribed 4256-5040 cGy in 16-28 fractions. CBCT and AlignRT (SGRT; Vision RT Ltd.) were used for treatment setup during the first three fractions, then daily AlignRT and weekly CBCT thereafter. Each patient underwent a quality assurance CT (QA-CT) scan midway through the treatment course to assess anatomical and dosimetric changes. To emulate the SGRT and CBCT setups during treatment, the planning CT and QA-CT images were registered in two ways: (1) by registering the volume within the CTs covered by the CBCT field of view; and (2) by contouring and registering the surface surveyed by the AlignRT system. The original plan was copied onto these two datasets and the dose was recalculated. The clinical treatment volume (CTV): V95% ; heart: V25Gy , V15Gy , and mean dose; and ipsilateral lung: V20Gy , V10Gy , and V5Gy , were recorded. Multi and univariate analyses of variance were performed to assess the differences in dose metric values between the planning CT and the SGRT and CBCT setups. RESULTS The CTV V95% and lung V20Gy , V10Gy , and V5Gy dose metrics were all significantly (p < 0.01) lower on the QA-CT in both the CBCT and SGRT setup. The differences were not clinically significant and were, on average, 1.4-1.6% lower for CTV V95% and 1.8%-6.0% lower for the lung dose metrics. When comparing the lung and CTV V95% dose metrics between the CBCT and SGRT setups, no significant difference was observed. This indicates that the SGRT setup provides similar dosimetric accuracy as CBCT. CONCLUSION This study supports the daily use of SGRT systems for the accurate dose delivery of proton breast treatment plans.
Collapse
Affiliation(s)
- Michael J MacFarlane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michelle Mundis
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arun Gopal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shifeng Chen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
45
|
Zhou S, Li J, Du Y, Yu S, Wang M, Wu H, Yue H. Development and Longitudinal Analysis of Plan-Based Streamlined Quality Assurance on Multiple Positioning Guidance Systems With Single Phantom Setup. Front Oncol 2021; 11:683733. [PMID: 34222005 PMCID: PMC8242243 DOI: 10.3389/fonc.2021.683733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose This study was to propose and validate an efficient and streamlined quality assurance (QA) method with a single phantom setup to check performances of patient positioning guidance systems including six-degree-of-freedom (6DoF) couch, X-ray modalities (kV–kV, MV–MV and CBCT), optical surface imaging system (AlignRT), lasers and optical distance indicator (ODI). Methods and Materials The QA method was based on a pseudo-patient treatment plan using the AlignRT cube phantom. The cube was first randomly set up on the couch, and the initial position offsets were acquired by AlignRT and CBCT. The cube was restored to its reference position by 6DoF couch shift, during which the couch motion accuracy and tracking performances of AlignRT and CBCT were derived. After that, the residual offsets were acquired by kV–kV, MV–MV and AlignRT to derive the isocenter discrepancies. Finally, the laser alignment and ODI values were visually inspected. The QA procedure had been internally approved as a standard weekly QA test, and the results over 50 weeks were longitudinally analyzed for clinical validation. Results The 6DoF couch motion errors as well as the tracking errors of AlignRT were sub-millimeter and sub-degree, and no deviation over 1 mm or 1 deg was identified. The ROI mode of isocenter (ISO) in AlignRT exhibited more consistent results than the centroid (CEN). While the isocenter discrepancy between CBCT and kV–kV was negligible, the maximal discrepancies between CBCT and MV–MV were 0.4 mm in LNG and 0.3 deg in PITCH. The isocenter discrepancies between CBCT and AlignRT were <0.5 mm in translation and <0.3 deg in rotation. For AlignRT, the isocenter discrepancies between the DICOM and SGRT references were about 0.6 mm in VRT, 0.5 mm in LNG and 0.2 deg in PITCH. As the therapists became familiar with the workflow, the average time to complete the whole procedure was around 23 min. Conclusions The streamlined QA exhibits desirable practicality as an efficient multipurpose performance check on positioning guidance systems. The stability, tracking performance and isocenter congruence of the positioning guidance systems have been fully validated for all clinical image guidance RT application, even SRS/SBRT, which requires the strictest tolerance.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Songmao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
46
|
Fattori G, Lomax AJ, Weber DC, Safai S. Technical assessment of the NDI Polaris Vega optical tracking system. Radiat Oncol 2021; 16:87. [PMID: 33980248 PMCID: PMC8114517 DOI: 10.1186/s13014-021-01804-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Polaris product line from Northern Digital Inc. is well known for accurate optical tracking measurements in research and medical environments. The Spectra position sensor, to date often found in image guided radiotherapy suites, has however reached its end-of-life, being replaced by the new Vega model. The performance in static and dynamic measurements of this new device has been assessed in controlled laboratory conditions, against the strict requirements for system integration in radiation therapy. The system accuracy has improved with respect to the Spectra in both static (0.045 mm RMSE) and dynamic (0.09 mm IQR, < 20 cm/s) tracking and brings marginal improvement in the measurement latency (14.2 ± 1.8 ms). The system performance was further confirmed under clinical settings with the report of early results from periodic QA tests within specifications. Based on our tests, the Polaris Vega meets the quality standards of radiotherapy applications and can be safely used for monitoring respiratory breathing motion or verifying patient positioning.
Collapse
Affiliation(s)
- Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland. .,Department of Physics, ETH Zurich, 8092, Zurich, Switzerland.
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, 8091, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, 3000, Bern, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
47
|
Capaldi DPI, Skinner LB, Dubrowski P, Zhang H, Xing L, Chuang CF, Loo BW, Bush KK, Fahimian BP, Yu AS. A robotically assisted 3D printed quality assurance lung phantom for Calypso. Phys Med Biol 2021; 66. [PMID: 33657537 DOI: 10.1088/1361-6560/abebaa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
Purpose. Radiation dose delivered to targets located near the upper-abdomen or in the thorax are significantly affected by respiratory-motion. Relatively large-margins are commonly added to compensate for this motion, limiting radiation-dose-escalation. Internal-surrogates of target motion, such as a radiofrequency (RF) tracking system, i.e. Calypso®System, are used to overcome this challenge and improve normal-tissue sparing. RF tracking systems consist of implanting transponders in the vicinity of the tumor to be tracked using radiofrequency-waves. Unfortunately, although the manufacture provides a universal quality-assurance (QA) phantom, QA-phantoms specifically for lung-applications are limited, warranting the development of alternative solutions to fulfil the tests mandated by AAPM's TG142. Accordingly, our objective was to design and develop a motion-phantom to evaluate Calypso for lung-applications that allows the Calypso®Beacons to move in different directions to better simulate truelung-motion.Methods and Materials.A Calypso lung QA-phantom was designed, and 3D-printed. The design consists of three independent arms where the transponders were attached. A pinpoint-chamber with a buildup-cap was also incorporated. A 4-axis robotic arm was programmed to drive the motion-phantom to mimic breathing. After acquiring a four-dimensional-computed-tomography (4DCT) scan of the motion-phantom, treatment-plans were generated and delivered on a Varian TrueBeam®with Calypso capabilities. Stationary and gated-treatment plans were generated and delivered to determine the dosimetric difference between gated and non-gated treatments. Portal cine-images were acquired to determine the temporal-accuracy of delivery by calculating the difference between the observed versus expected transponders locations with the known speed of the transponders' motion.Results.Dosimetric accuracy is better than the TG142 tolerance of 2%. Temporal accuracy is greater than, TG142 tolerance of 100 ms for beam-on, but less than 100 ms for beam-hold.Conclusions.The robotic QA-phantom designed and developed in this study provides an independent phantom for performing Calypso lung-QA for commissioning and acceptance testing of Calypso for lung treatments.
Collapse
Affiliation(s)
- Dante P I Capaldi
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Lawrie B Skinner
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Piotr Dubrowski
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Hao Zhang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Lei Xing
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Cynthia F Chuang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Billy W Loo
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Karl K Bush
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Benjamin P Fahimian
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Amy S Yu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
48
|
Covington EL, Popple RA. A Low-Cost Method to Assess the Performance of Surface Guidance Imaging Systems at Non-Zero Couch Angles. Cureus 2021; 13:e14278. [PMID: 33959456 PMCID: PMC8093097 DOI: 10.7759/cureus.14278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A procedure is presented to assess performance at non-zero couch angles and perform routine quality assurance (QA) on surface-guided radiotherapy (SGRT) imaging systems used for stereotactic radiosurgery (SRS). A low-cost anthropomorphic phantom was used to assess the system under patient-like conditions. The phantom is embedded with a tungsten ball bearing (BB) to facilitate the use of surface imaging (SI) with concurrent megavoltage (MV) imaging to cross-compare and validate SI-reported offsets. Data analysis is done via in-house software that utilized the SGRT system’s log files for automated analysis. This procedure enables users to assess and inter-compare MV-reported offsets with their SGRT system. The analysis provides SGRT system residual error so that users are aware of inherent offsets present in addition to increases in translational offsets due to couch walkout. The procedure was validated with two commercial SGRT systems. The procedure can be used with any surface imaging system and linear accelerator system.
Collapse
Affiliation(s)
| | - Richard A Popple
- Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
49
|
Keikhai Farzaneh MJ, Momennezhad M, Naseri S. Gated Radiotherapy Development and its Expansion. J Biomed Phys Eng 2021; 11:239-256. [PMID: 33937130 PMCID: PMC8064130 DOI: 10.31661/jbpe.v0i0.948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
Abstract
One of the most important challenges in treatment of patients with cancerous tumors of chest and abdominal areas is organ movement. The delivery of treatment radiation doses to tumor tissue is a challenging matter while protecting healthy and radio sensitive tissues. Since the movement of organs due to respiration causes a discrepancy in the middle of planned and delivered dose distributions. The moderation in the fatalistic effect of intra-fractional target travel on the radiation therapy correctness is necessary for cutting-edge methods of motion remote monitoring and cancerous growth irradiancy. Tracking respiratory milling and implementation of breath-hold techniques by respiratory gating systems have been used for compensation of respiratory motion negative effects. Therefore, these systems help us to deliver precise treatments and also protect healthy and critical organs. It seems aspiration should be kept under observation all over treatment period employing tracking seed markers (e.g. fiducials), skin surface scanners (e.g. camera and laser monitoring systems) and aspiration detectors (e.g. spirometers). However, these systems are not readily available for most radiotherapy centers around the word. It is believed that providing and expanding the required equipment, gated radiotherapy will be a routine technique for treatment of chest and abdominal tumors in all clinical radiotherapy centers in the world by considering benefits of respiratory gating techniques in increasing efficiency of patient treatment in the near future. This review explains the different technologies and systems as well as some strategies available for motion management in radiotherapy centers.
Collapse
Affiliation(s)
- Mohammad Javad Keikhai Farzaneh
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Department of Medical Physics, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Momennezhad
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Naseri
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Vlaskou Badra E, Baumgartl M, Fabiano S, Jongen A, Guckenberger M. Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Transl Lung Cancer Res 2021; 10:1930-1949. [PMID: 34012804 PMCID: PMC8107760 DOI: 10.21037/tlcr-20-860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) allows for the non-invasive and precise delivery of ablative radiation dose. The use and availability of SBRT has increased rapidly over the past decades. SBRT has been proven to be a safe, effective and efficient treatment for early stage non-small cell lung cancer (NSCLC) and is presently considered the standard of care in the treatment of medically or functionally inoperable patients. Evidence from prospective randomized trials on the optimal treatment of patients deemed medically operable remains owing, as three trials comparing SBRT to surgery in this cohort were terminated prematurely due to poor accrual. Yet, SBRT in early stage NSCLC is associated with favorable toxicity profiles and excellent rates of local control, prompting discussion in regard of the treatment of medically operable patients, where the standard of care currently remains surgical resection. Although local control in early stage NSCLC after SBRT is high, distant failure remains an issue, prompting research interest to the combination of SBRT and systemic treatment. Evolving advances in SBRT technology further facilitate the safe treatment of patients with medically or anatomically challenging situations. In this review article, we discuss international guidelines and the current standard of care, ongoing clinical challenges and future directions from the clinical and technical point of view.
Collapse
Affiliation(s)
- Eugenia Vlaskou Badra
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Baumgartl
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aurélien Jongen
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|