1
|
Shi D, Ming X, Wang K, Wang X, Sheng Y, Jia S, Zhang J. Robot-assisted system for non-invasive wide-range flexible eye positioning and tracking in particle radiotherapy. Phys Eng Sci Med 2024:10.1007/s13246-024-01453-6. [PMID: 38922382 DOI: 10.1007/s13246-024-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Particle (proton, carbon ion, or others) radiotherapy for ocular tumors is highly dependent on precise dose distribution, and any misalignment can result in severe complications. The proposed eye positioning and tracking system (EPTS) was designed to non-invasively position eyeballs and is reproducible enough to ensure accurate dose distribution by guiding gaze direction and tracking eye motion. Eye positioning was performed by guiding the gaze direction with separately controlled light sources. Eye tracking was performed by a robotic arm with cameras and a mirror. The cameras attached to its end received images through mirror reflection. To maintain a light weight, certain materials, such as carbon fiber, were utilized where possible. The robotic arm was controlled by a robot operating system. The robotic arm, turntables, and light source were actively and remotely controlled in real time. The videos captured by the cameras could be annotated, saved, and loaded into software. The available range of gaze guidance is 360° (azimuth). Weighing a total of 18.55 kg, the EPTS could be installed or uninstalled in 10 s. The structure, motion, and electromagnetic compatibility were verified via experiments. The EPTS shows some potential due to its non-invasive wide-range flexible eye positioning and tracking, light weight, non-collision with other equipment, and compatibility with CT imaging and dose delivery. The EPTS can also be remotely controlled in real time and offers sufficient reproducibility. This system is expected to have a positive impact on ocular particle radiotherapy.
Collapse
Affiliation(s)
- Dequan Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Ming
- Institute of Modern Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, 200433, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, China
| | - Kundong Wang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Xu Wang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, China
| | - Shouqiang Jia
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinzhong Zhang
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Shen CJ, Kry SF, Buchsbaum JC, Milano MT, Inskip PD, Ulin K, Francis JH, Wilson MW, Whelan KF, Mayo CS, Olch AJ, Constine LS, Terezakis SA, Vogelius IR. Retinopathy, Optic Neuropathy, and Cataract in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:431-445. [PMID: 37565958 DOI: 10.1016/j.ijrobp.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Few reports describe the risks of late ocular toxicities after radiation therapy (RT) for childhood cancers despite their effect on quality of life. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) ocular task force aims to quantify the radiation dose dependence of select late ocular adverse effects. Here, we report results concerning retinopathy, optic neuropathy, and cataract in childhood cancer survivors who received cranial RT. METHODS AND MATERIALS A systematic literature search was performed using the PubMed, MEDLINE, and Cochrane Library databases for peer-reviewed studies published from 1980 to 2021 related to childhood cancer, RT, and ocular endpoints including dry eye, keratitis/corneal injury, conjunctival injury, cataract, retinopathy, and optic neuropathy. This initial search yielded abstracts for 2947 references, 269 of which were selected as potentially having useful outcomes and RT data. Data permitting, treatment and outcome data were used to generate normal tissue complication probability models. RESULTS We identified sufficient RT data to generate normal tissue complication probability models for 3 endpoints: retinopathy, optic neuropathy, and cataract formation. Based on limited data, the model for development of retinopathy suggests 5% and 50% risk of toxicity at 42 and 62 Gy, respectively. The model for development of optic neuropathy suggests 5% and 50% risk of toxicity at 57 and 64 Gy, respectively. More extensive data were available to evaluate the risk of cataract, separated into self-reported versus ophthalmologist-diagnosed cataract. The models suggest 5% and 50% risk of self-reported cataract at 12 and >40 Gy, respectively, and 50% risk of ophthalmologist-diagnosed cataract at 9 Gy (>5% long-term risk at 0 Gy in patients treated with chemotherapy only). CONCLUSIONS Radiation dose effects in the eye are inadequately studied in the pediatric population. Based on limited published data, this PENTEC comprehensive review establishes relationships between RT dose and subsequent risks of retinopathy, optic neuropathy, and cataract formation.
Collapse
Affiliation(s)
- Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Stephen F Kry
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | | | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Peter D Inskip
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kenneth Ulin
- Imaging and Radiation Oncology Rhode Island QA Center, Lincoln, Rhode Island
| | - Jasmine H Francis
- Ophthalmic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew W Wilson
- Division of Ophthalmology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kimberly F Whelan
- Pediatric Hematology/Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Charles S Mayo
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California/Children's Hospital Los Angeles, Los Angeles, California
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Stephanie A Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Mesny E, Jacob J, Culot F, Calugaru V, Jenny C, Fonti B, Bourdais R, Courtault-Deslandes F, Boulle G, Meillan N, Simon JM, Maingon P, Feuvret L. Optic nerve motion and gaze direction: Their impact on intraorbital tumor radiotherapy. Cancer Radiother 2022; 26:678-683. [DOI: 10.1016/j.canrad.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
|
4
|
Convolutional Neural Networks Cascade for Automatic Pupil and Iris Detection in Ocular Proton Therapy. SENSORS 2021; 21:s21134400. [PMID: 34199068 PMCID: PMC8271684 DOI: 10.3390/s21134400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Eye tracking techniques based on deep learning are rapidly spreading in a wide variety of application fields. With this study, we want to exploit the potentiality of eye tracking techniques in ocular proton therapy (OPT) applications. We implemented a fully automatic approach based on two-stage convolutional neural networks (CNNs): the first stage roughly identifies the eye position and the second one performs a fine iris and pupil detection. We selected 707 video frames recorded during clinical operations during OPT treatments performed at our institute. 650 frames were used for training and 57 for a blind test. The estimations of iris and pupil were evaluated against the manual labelled contours delineated by a clinical operator. For iris and pupil predictions, Dice coefficient (median = 0.94 and 0.97), Szymkiewicz–Simpson coefficient (median = 0.97 and 0.98), Intersection over Union coefficient (median = 0.88 and 0.94) and Hausdorff distance (median = 11.6 and 5.0 (pixels)) were quantified. Iris and pupil regions were found to be comparable to the manually labelled ground truths. Our proposed framework could provide an automatic approach to quantitatively evaluating pupil and iris misalignments, and it could be used as an additional support tool for clinical activity, without impacting in any way with the consolidated routine.
Collapse
|
5
|
Elisei G, Pella A, Ricotti R, Via R, Fiore MR, Calvi G, Mastella E, Paganelli C, Tagaste B, Bello F, Fontana G, Meschini G, Buizza G, Valvo F, Orlandi E, Ciocca M, Baroni G. Development and validation of a new set-up simulator dedicated to ocular proton therapy at CNAO. Phys Med 2021; 82:228-239. [PMID: 33657472 DOI: 10.1016/j.ejmp.2021.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022] Open
Abstract
An Eye Tracking System (ETS) is used at CNAO for providing a stable and reproducible ocular proton therapy (OPT) set-up, featuring a fixation light (FL) and monitoring stereo-cameras embedded in a rigid case. The aim of this work is to propose an ETS set-up simulation algorithm, that automatically provides the FL positioning in space, according to patient-specific gaze direction and avoiding interferences with patient, beam and collimator. Two configurations are provided: one in the CT room for acquiring images required for treatment planning with the patient lying on a couch, and one related to the treatment room with the patient sitting in front of the beam. Algorithm validation was performed reproducing ETS simulation (CT) and treatment (room) set-up for 30 patients previously treated at CNAO. The positioning accuracy of the device was quantified through a set of 14 control points applied to the ETS case and localizable both in the CT volume and in room X-ray images. Differences between the position of ETS reference points estimated by the algorithm and those measured by imaging systems are reported. The corresponding gaze direction deviation is on average 0.2° polar and 0.3° azimuth for positioning in CT room and 0.1° polar and 0.4° azimuth in the treatment room. The simulation algorithm was embedded in a clinically usable software application, which we assessed as capable of ensuring ETS positioning with an average accuracy of 2 mm in CT room and 1.5 mm in treatment room, corresponding to gaze direction deviations consistently lower than 1°.
Collapse
Affiliation(s)
- G Elisei
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - A Pella
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy.
| | - R Ricotti
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - R Via
- Center of Proton Therapy, Paul Scherrer Institut, 5232 Villigen, PSI, Switzerland
| | - M R Fiore
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - G Calvi
- Centro Nazionale di Adroterapia Oncologica CNAO, Particle Accelerator Department, Pavia, Italy
| | - E Mastella
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department - Medical Physics Unit, Pavia, Italy
| | - C Paganelli
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - B Tagaste
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - F Bello
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - G Fontana
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - G Meschini
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - G Buizza
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - F Valvo
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - E Orlandi
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - M Ciocca
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department - Medical Physics Unit, Pavia, Italy
| | - G Baroni
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy; Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| |
Collapse
|
6
|
Fleury E, Trnková P, Erdal E, Hassan M, Stoel B, Jaarma‐Coes M, Luyten G, Herault J, Webb A, Beenakker J, Pignol J, Hoogeman M. Three-dimensional MRI-based treatment planning approach for non-invasive ocular proton therapy. Med Phys 2021; 48:1315-1326. [PMID: 33336379 PMCID: PMC7986198 DOI: 10.1002/mp.14665] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 10/05/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To develop a high-resolution three-dimensional (3D) magnetic resonance imaging (MRI)-based treatment planning approach for uveal melanomas (UM) in proton therapy. MATERIALS/METHODS For eight patients with UM, a segmentation of the gross tumor volume (GTV) and organs-at-risk (OARs) was performed on T1- and T2-weighted 7 Tesla MRI image data to reconstruct the patient MR-eye. An extended contour was defined with a 2.5-mm isotropic margin derived from the GTV. A broad beam algorithm, which we have called πDose, was implemented to calculate relative proton absorbed doses to the ipsilateral OARs. Clinically favorable gazing angles of the treated eye were assessed by calculating a global weighted-sum objective function, which set penalties for OARs and extreme gazing angles. An optimizer, which we have named OPT'im-Eye-Tool, was developed to tune the parameters of the functions for sparing critical-OARs. RESULTS In total, 441 gazing angles were simulated for every patient. Target coverage including margins was achieved in all the cases (V95% > 95%). Over the whole gazing angles solutions space, maximum dose (Dmax ) to the optic nerve and the macula, and mean doses (Dmean ) to the lens, the ciliary body and the sclera were calculated. A forward optimization was applied by OPT'im-Eye-Tool in three different prioritizations: iso-weighted, optic nerve prioritized, and macula prioritized. In each, the function values were depicted in a selection tool to select the optimal gazing angle(s). For example, patient 4 had a T2 equatorial tumor. The optimization applied for the straight gazing angle resulted in objective function values of 0.46 (iso-weighted situation), 0.90 (optic nerve prioritization) and 0.08 (macula prioritization) demonstrating the impact of that angle in different clinical approaches. CONCLUSIONS The feasibility and suitability of a 3D MRI-based treatment planning approach have been successfully tested on a cohort of eight patients diagnosed with UM. Moreover, a gaze-angle trade-off dose optimization with respect to OARs sparing has been developed. Further validation of the whole treatment process is the next step in the goal to achieve both a non-invasive and a personalized proton therapy treatment.
Collapse
Affiliation(s)
- E. Fleury
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - P. Trnková
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - E. Erdal
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - M. Hassan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - B. Stoel
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - M. Jaarma‐Coes
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - G. Luyten
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - J. Herault
- Department of Radiation OncologyCentre Antoine LacassagneNiceFrance
| | - A. Webb
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - J.‐W. Beenakker
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - J.‐P. Pignol
- Department of Radiation OncologyDalhousie UniversityHalifaxCanada
| | - M. Hoogeman
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| |
Collapse
|
7
|
Jaarsma-Coes MG, Marinkovic M, Astreinidou E, Schuurmans MS, Peters FP, Luyten GP, Rasch CR, Beenakker JWM. Measuring eye deformation between planning and proton beam therapy position using magnetic resonance imaging. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 16:33-36. [PMID: 33458341 PMCID: PMC7807689 DOI: 10.1016/j.phro.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023]
Abstract
Eye and tumour deformation due to gravity is less than 0.4 mm. Conformity index between flexed and supine position for eyes is >0.95. Conformity index between flexed and supine position for tumours is >0.85. Supinely acquired MR images can be used for PBT planning.
Proton beam therapy (PBT) for uveal melanoma (UM) is performed in sitting position, while the acquisition of the Magnetic resonance (MR)-images for treatment planning is performed in supine position. We assessed the effect of this difference in position on the eye- and tumour- shape. Seven subjects and six UM-patients were scanned in supine and a seating mimicking position. The distances between the tumour/sclera in both positions were calculated. The median distance between both positions was 0.1 mm. Change in gravity direction produced no substantial changes in sclera and tumour shape, indicating that supinely acquired MR-images can be used to plan ocular-PBT.
Collapse
Affiliation(s)
- Myriam G. Jaarsma-Coes
- Ophthalmology, Leiden University Medical Centre, Leiden, Netherlands
- Radiology, C.J. Gorter Centre for High Field MRI, Leiden University Medical Centre, Leiden, Netherlands
- Corresponding author at: Leiden University Medical Center, P.O. 9600, 2300 RC Leiden, The Netherlands.
| | - Marina Marinkovic
- Ophthalmology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Megan S. Schuurmans
- Radiology, C.J. Gorter Centre for High Field MRI, Leiden University Medical Centre, Leiden, Netherlands
| | - Femke P. Peters
- Radiotherapy, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Coen R.N. Rasch
- Radiotherapy, Leiden University Medical Centre, Leiden, Netherlands
| | - Jan-Willem M. Beenakker
- Ophthalmology, Leiden University Medical Centre, Leiden, Netherlands
- Radiology, C.J. Gorter Centre for High Field MRI, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
8
|
Via R, Hennings F, Fattori G, Pica A, Lomax A, Weber DC, Baroni G, Hrbacek J. Technical Note: Benchmarking automated eye tracking and human detection for motion monitoring in ocular proton therapy. Med Phys 2020; 47:2237-2241. [PMID: 32037578 DOI: 10.1002/mp.14087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Ocular proton therapy is an effective therapeutic option for patients affected with uveal melanomas. An optical eye-tracking system (ETS) aiming at noninvasive motion monitoring was developed and tested in a clinical scenario. MATERIALS AND METHODS The ETS estimates eye position and orientation at 25 frames per second using the three-dimensional position of pupil and cornea curvature centers identified, in the treatment room, through stereoscopic optical imaging and infrared eye illumination. Its capabilities for automatic detection of eye motion were retrospectively evaluated on 60 treatment fractions. Then, the ETS performance was benchmarked against the clinical standard based on visual control and manual beam interruption. RESULTS Eye-tracking system detected eye position successfully in 97% of all available frames. Eye-tracking system-based eye monitoring during therapy guarantees quicker response to involuntary eye motions than manual beam interruptions and avoids unnecessary beam interruptions. CONCLUSIONS Eye-tracking system shows promise for on-line monitoring of eye motion. Its introduction in the clinical workflow will guarantee a swifter treatment course for the patient and the clinical personnel.
Collapse
Affiliation(s)
- Riccardo Via
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| | - Fabian Hennings
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| | - Giovanni Fattori
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| | - Alessia Pica
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| | - Antony Lomax
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Guido Baroni
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milano, 20133, Italy
| | - Jan Hrbacek
- Paul Scherrer Institut (PSI), Center for Proton Therapy, 5232, Villigen PSI, Switzerland
| |
Collapse
|
9
|
Gong C, Shen M, Zheng X, Han C, Zhou Y, Xie C, Jin X. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer. Phys Med Biol 2019; 64:125009. [PMID: 30844768 DOI: 10.1088/1361-6560/ab0ddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiation-associated toxicities due to sophisticated ocular anatomy and shape variability of organs at risk (OARs) are major concerns during external beam radiation therapy (EBRT) of patients with intraocular cancer. A novel two-step image registration strategy between optical coherence tomography (OCT) and computed tomography (CT) images was proposed and validated to precisely localize the target in the EBRT of patients with intraocular cancer. Specifically, multiple features from OCT and CT images were extracted automatically, then spatial transformation based on thin-plate spline function was performed iteratively to achieve feature alignment between the CT and OCT images. Finally, an exclusive OR (XOR) algorithm was applied for precise 3D registration using a 3D-mesh model generated from OCT and CT volumes. The accuracy of the proposed novel registration strategy was validated and tested in a schematic-eye phantom with an artificially introduced tumor and in ten patients with confirmed primary and/or secondary intraocular cancer. There was an average registration error and computational time of 0.21 ± 0.05° and 259 ± 5 s, together with an average Dice similarity coefficient and Hausdorff distance of 88.4 ± 0.65 and 0.89 ± 0.09, respectively. The preliminary experimental results demonstrated that the proposed novel strategy to overcome current limitations on eye modeling and to localize precisely the tumor target during EBRT of intraocular cancer is promising.
Collapse
Affiliation(s)
- Changfei Gong
- Department of Radiation and Medical Oncology, Wenzhou Medical University 1st Affiliated Hospital, Wenzhou 325000, People's Republic of China. The authors contributed equally to this study
| | | | | | | | | | | | | |
Collapse
|
10
|
Via R, Pella A, Romanò F, Fassi A, Ricotti R, Tagaste B, Vai A, Mastella E, Rosaria Fiore M, Valvo F, Ciocca M, Baroni G. A platform for patient positioning and motion monitoring in ocular proton therapy with a non-dedicated beamline. Phys Med 2019; 59:55-63. [PMID: 30928066 DOI: 10.1016/j.ejmp.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE At Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy) ocular proton therapy (OPT) is delivered using a non-dedicated beamline. This paper describes the novel clinical workflow as well as technologies and methods adopted to achieve accurate target positioning and verification during ocular proton therapy at CNAO. METHOD The OPT clinical protocol at CNAO prescribes a treatment simulation and a delivery phase, performed in the CT and treatment rooms, respectively. The patient gaze direction is controlled and monitored during the entire workflow by means of an eye tracking system (ETS) featuring two optical cameras and an embedded fixation diode light. Thus, the accurate alignment of the fixation light provided to the patient to the prescribed gazed direction is required for an effective treatment. As such, a technological platform based on active robotic manipulators and IR optical tracking-based guidance was developed and tested. The effectiveness of patient positioning strategies was evaluated on a clinical dataset comprising twenty patients treated at CNAO. RESULTS According to experimental testing, the developed technologies guarantee uncertainties lower than one degree in gaze direction definition by means of ETS-guided positioning. Patient positioning and monitoring strategies during treatment effectively mitigated set-up uncertainties and exhibited sub-millimetric accuracy in radiopaque markers alignment. CONCLUSION Ocular proton therapy is currently delivered at CNAO with a non-dedicated beamline. The technologies developed for patient positioning and motion monitoring have proven to be compliant with the high geometrical accuracy required for the treatment of intraocular tumors.
Collapse
Affiliation(s)
- Riccardo Via
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
| | - Andrea Pella
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | | | - Aurora Fassi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Rosalinda Ricotti
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | - Barbara Tagaste
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | - Alessandro Vai
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | - Edoardo Mastella
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | | | - Francesca Valvo
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica Foundation, Pavia 27100, Italy
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
11
|
Via R, Hennings F, Fattori G, Fassi A, Pica A, Lomax A, Weber DC, Baroni G, Hrbacek J. Noninvasive eye localization in ocular proton therapy through optical eye tracking: A proof of concept. Med Phys 2018; 45:2186-2194. [DOI: 10.1002/mp.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/16/2018] [Accepted: 02/17/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Riccardo Via
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
| | - Fabian Hennings
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
| | - Aurora Fassi
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
| | - Alessia Pica
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
| | - Antony Lomax
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
- Department of Physics; ETH-Hönggerberg; Zurich 8093 Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
- Radiation Oncology Department; Inselspital Universitätsspital Bern; Bern 3010 Switzerland
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
- CNAO Centro Nazionale di Adroterapia Oncologica; Pavia 27100 Italy
| | - Jan Hrbacek
- Center for Proton Therapy; Paul Scherrer Institut; Villigen PSI 5232 Switzerland
| |
Collapse
|
12
|
Inoue T, Masai N, Shiomi H, Oh RJ, Uemoto K, Hashida N. Feasibility study of a non-invasive eye fixation and monitoring device using a right-angle prism mirror for intensity-modulated radiotherapy for choroidal melanoma. JOURNAL OF RADIATION RESEARCH 2017; 58:386-396. [PMID: 27811199 PMCID: PMC5440859 DOI: 10.1093/jrr/rrw104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
We aimed to describe the feasibility and efficacy of a novel non-invasive fixation and monitoring (F-M) device for the eyeballs (which uses a right-angle prism mirror as the optic axis guide) in three consecutive patients with choroidal melanoma who were treated with intensity-modulated radiotherapy (IMRT). The device consists of an immobilization shell, a right-angle prism mirror, a high magnification optical zoom video camera, a guide lamp, a digital voice recorder, a personal computer, and a National Television System Committee standard analog video cable. Using the right-angle prism mirror, the antero-posterior axis was determined coincident with the optic axis connecting the centers of the cornea and pupil. The axis was then connected to the guide light and video camera installed on the couch top on the distal side. Repositioning accuracy improved using this method. Furthermore, the positional error of the lens was markedly reduced from ±1.16, ±1.68 and ±1.11 mm to ±0.23, ±0.58 and ±0.26 mm in the horizontal direction, and from ±1.50, ±1.03 and ±0.48 mm to ±0.29, ±0.30 and ±0.24 mm in the vertical direction (Patient #1, #2 and #3, respectively). Accordingly, the F-M device method decreased the planning target volume size and improved the dose-volume histogram parameters of the organ-at-risk via IMRT inverse planning. Importantly, the treatment method was well tolerated.
Collapse
Affiliation(s)
- Toshihiko Inoue
- Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan
| | - Norihisa Masai
- Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan
| | - Hiroya Shiomi
- Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan
| | - Ryoong-Jin Oh
- Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan
| | - Kenji Uemoto
- Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan
| | - Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Kim TW, Choi E, Park J, Shin DH, Jung SK, Seok S, Cho KH, Kim JY, Kim DY, Kim TH, Suh YK, Kim YJ, Moon SH. Clinical Outcomes of Proton Beam Therapy for Choroidal Melanoma at a Single Institute in Korea. Cancer Res Treat 2017; 50:335-344. [PMID: 28421723 PMCID: PMC5912133 DOI: 10.4143/crt.2017.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/17/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study retrospectively evaluated the clinical outcomes and complications of proton beam therapy (PBT) in a single institution in Korea and quantitatively analyzed the change in tumor volume after PBT using magnetic resonance imaging (MRI). MATERIALS AND METHODS Twenty-four treatment-naïve patients who underwent PBT for choroidal melanoma between 2009 and 2015 were reviewed. Dose fractionation was 60-70 cobalt gray equivalents over 5 fractions. Orbital MRIs were taken at baseline and 3, 6, and 12 months after PBT and annually thereafter. The tumor volume was reconstructed and evaluated by stacking the tumor boundary in each thin-sliced axial T1-weighted image using MIM software. RESULTS The median follow-up duration was 36.5 months (range, 9 to 82 months). One patient had suspicious local progression and two patients had distant metastasis. The 3-year local progression-free survival, distant metastasis-free survival, and overall survival rates were 95.8%, 95.8%, and 100%,respectively. Five Common Terminology Criteria for Adverse Event ver. 4.03 grade 3-4 toxicities were observed in four patients (16.7%), including one with neovascular glaucoma. The mean tumor volume at the baseline MRI was 0.565±0.084 mL (range, 0.074 to 1.610 mL), and the ratios of the mean volume at 3, 6, and 12 months to that at baseline were 81.8%, 67.3%, and 60.4%, respectively. CONCLUSION The local controlrate and complication profile after PBT in patientswith choroidal melanoma in Korea were comparable with those reported in a previous PBT series. The change in tumor volume after PBT exhibited a gradual regression pattern on MRI.
Collapse
Affiliation(s)
- Tae Wan Kim
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Euncheol Choi
- Department of Radiation Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Jeonghoon Park
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, TX, USA
| | - Dong-Ho Shin
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Su Kyung Jung
- Ophthalmology Clinic, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | | | - Kwan Ho Cho
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Joo-Young Kim
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Dae Yong Kim
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Tae Hyun Kim
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yang Kwon Suh
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yeon Joo Kim
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sung Ho Moon
- Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
14
|
Wyder S, Hennings F, Pezold S, Hrbacek J, Cattin PC. With Gaze Tracking Toward Noninvasive Eye Cancer Treatment. IEEE Trans Biomed Eng 2016; 63:1914-1924. [DOI: 10.1109/tbme.2015.2505740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Via R, Fassi A, Fattori G, Fontana G, Pella A, Tagaste B, Riboldi M, Ciocca M, Orecchia R, Baroni G. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy. Med Phys 2016; 42:2194-202. [PMID: 25979013 DOI: 10.1118/1.4915921] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. METHODS Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. RESULTS Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. CONCLUSIONS A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.
Collapse
Affiliation(s)
- Riccardo Via
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Aurora Fassi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Giovanni Fattori
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Giulia Fontana
- CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Andrea Pella
- CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Barbara Tagaste
- CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Marco Riboldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Mario Ciocca
- CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Roberto Orecchia
- CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy and European Institute of Oncology, Milano 20141, Italy
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| |
Collapse
|
16
|
Rüegsegger MB, Geiser D, Steiner P, Pica A, Aebersold DM, Kowal JH. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept. Med Phys 2014; 41:081704. [DOI: 10.1118/1.4885975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
La Rosa V, Kacperek A, Royle G, Gibson A. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers. Phys Med Biol 2014; 59:2623-38. [PMID: 24786372 DOI: 10.1088/0031-9155/59/11/2623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σ(bkg), which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σ(bkg). Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.
Collapse
Affiliation(s)
- Vanessa La Rosa
- Department of Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | | | | | | |
Collapse
|