1
|
Benzazon N, Carré A, de Kermenguy F, Niyoteka S, Maury P, Colnot J, M'hamdi M, Aichi ME, Veres C, Allodji R, de Vathaire F, Sarrut D, Journy N, Alapetite C, Grégoire V, Deutsch E, Diallo I, Robert C. Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation Therapy - A Proof of Concept. Int J Radiat Oncol Biol Phys 2024; 120:253-264. [PMID: 38554830 DOI: 10.1016/j.ijrobp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations. METHODS AND MATERIALS For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric. RESULTS Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively. CONCLUSIONS This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
| | - Alexandre Carré
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Stéphane Niyoteka
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Pauline Maury
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France; THERYQ, PMB-Alcen, Peynier, France
| | - Meissane M'hamdi
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Mohammed El Aichi
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Cristina Veres
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Rodrigue Allodji
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Léon Bérard cancer center, Lyon, France
| | - Neige Journy
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | | | - Vincent Grégoire
- Department of Radiation Oncology, centre Léon-Bérard, Lyon, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Ghemiș DM, Marcu LG, Virag V, Virag A. Dosimetric characteristics of 6MV flattening filter free and flattened beams among beam-matched linacs: a three-institutional study. Radiat Oncol 2023; 18:126. [PMID: 37507741 PMCID: PMC10375603 DOI: 10.1186/s13014-023-02313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Beam matching is a concept in radiotherapy applied to clinics where more than one linac is employed to harmonise beam characteristics across linacs for allowing patients interchange without replanning. In view of this, the current study analyzes and compares dosimetric characteristics of 6MV flattening filter free and flattened beams of three beam-matched linear accelerators (linacs) from three different clinics with the aim to evaluate the matching under tight criteria for gamma analysis. METHODS Three Elekta linacs from three different clinics were included. The linacs have the same collimator assembly, Elekta Agility. Beam data were collected during commissioning process using PTW dosimetry systems. Dose profiles and percentage depth doses (PDD) were analyzed using 1D gamma analysis (1 mm/1%) as well as the following parameters: depth of maximum dose, PDD10, flatness, unflattnes, symmetry, penumbra, output factors. Additionally, five stereotactic treatment plans were optimized in one clinic and calculated by all three planning systems (Monaco) for a dosimetric comparison. RESULTS Gamma analysis of dose profiles and PDDs showed clinically acceptable results of 96.3% passing rate for profiles and 100% passing rate for PDDs. All dosimetric parameters were in good agreement with the reference data. Furthermore, dosimetric comparisons between stereotactic treatment plans showed a maximum standard deviation of 0.48 Gy for the maximum dose to PTV, and a maximum standard deviation of 0.1 Gy for the dose to the organs at risk. CONCLUSIONS All three linacs showed a strong agreement between parameters and passed the gamma analysis using 1% DD/1mm DTA criteria. This study confirmed the matching between linacs, offering the possibility to interchange patients with no replanning.
Collapse
Affiliation(s)
- Diana M Ghemiș
- Faculty of Physics, West University of Timisoara, Timisoara, Romania.
- MedEuropa, Oradea, 410191, Romania.
| | - Loredana G Marcu
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
- Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, 5001, Australia
| | | | | |
Collapse
|
3
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Al-Saleh WM, Hugtenburg RP. Monte Carlo modelling of a 6 MV Elekta linear accelerator for in-field and out-of-field dosimetry. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Attalla EM, Sinousy DM, Ibrahim HF, Elmekawy AF, Elhussiny FA. The accuracy of out of field dose calculations in commercial treatment planning system using GATE/GEANT4 Monte Carlo simulation. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Domgouo AIN, Fiume A, Grimaldi L, Moyo MN. Target volume size effect on comparison of dynamic arc treatment plans computed using flattened and unflattened 6MV beams. J Med Imaging Radiat Sci 2022; 53:686-692. [PMID: 36280570 DOI: 10.1016/j.jmir.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION/BACKGROUND In conventional linear accelerators, to obtain flat profiles leading to uniform dose distribution in homogeneous medium, the flattening filter is usually applied on the beam path. In recent years, to obtain higher dose rates, there have been the options of flattening filter free (FFF) beams and it has been noticed that these have many advantages. The aim of this study was to clearly underline the advantages and the drawbacks of flattened filter free (FFF) beams in comparison with the flattening filter (FF) beams for different clinical contexts (planning target volumes locations). METHODS Two groups (planned with auto-planning VMAT, full and partial arcs) of eight patients each were analyzed: Group I (small planning target volume PTV, with average volume 48.9 ±44.4 cm3), Group II (large PTV, with average volume 532.4 ±368.8 cm3). Both beam modalities 6MV and 6MVFFF were compared in terms of Dmax, D95%, D1cc, D2cc, homogeneity index (HI), number of monitor units (MU), treatment delivery time. RESULTS Using the 6MVFFF, the treatment delivery time was significantly reduced (p<0.05). For larger PTVs, the number of MU increased by more than twice, and the p-value shown a significant difference (p= 0.008). The value of Dmax increased by 4%. On the contrary, for small volumes, the results were quite similar from 6MVFFF to 6MV except some differences in terms of MU. CONCLUSION It is recommended to use 6MVFFF beam with small PTV volumes. Dose distributions are almost the same as with 6MV and there is a significant reduction of the treatment delivery time up to 57%. Due to the dose profile shape in FFF mode, the dose is lowered beyond the central axis for the FFF beams, and the additional MU allows the dose to be delivered away from the beam axis.
Collapse
Affiliation(s)
| | - Alfredo Fiume
- Medical physics department, Civil hospital of Brescia, Brescia, Italy
| | - Luca Grimaldi
- Medical physics department, Esine hospital of Brescia, Brescia, Italy
| | - Maurice Ndontchueng Moyo
- Centre for Atomic, Molecular Physics and Quantum Optics, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
7
|
Monte Carlo computation of photon energy spectra in central axis of flattened and unflattened beams and doses in critical organs in a water phantom model of prostate radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Yang B, Tang KK, Huang CY, Geng H, Lam WW, Wong YS, Tse MY, Lau KK, Cheung KY, Yu SK. Out-of-field dose and its constituent components for a 1.5 T MR-Linac. Phys Med Biol 2021; 66. [PMID: 34700308 DOI: 10.1088/1361-6560/ac3346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.
Collapse
Affiliation(s)
- Bin Yang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Keung Tang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Chen-Yu Huang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Hui Geng
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Wai Wang Lam
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Yeung Sum Wong
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Mei Yan Tse
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Ki Lau
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| |
Collapse
|
9
|
Ding Z, Xiang X, Kang K, Zeng Q, Yuan Q, Xu M. Comparison of dosimetric characteristics between flattening filter‐free and flattening filter mode volumetric‐modulated arc therapy plans in rectal cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhen Ding
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Xiaoyong Xiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Kailian Kang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Qi Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Qingqing Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Meiling Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| |
Collapse
|
10
|
García-Hernández T, Vicedo-González A, Sánchez-Nieto B, Romero-Expósito M, Roselló-Ferrando J. PERIPHERAL SURFACE DOSE FROM A LINEAR ACCELERATOR: RADIOCHROMIC FILM EXPERIMENTAL MEASUREMENTS OF FLATTENING FILTER FREE VERSUS FLATTENED BEAMS. RADIATION PROTECTION DOSIMETRY 2020; 188:285-298. [PMID: 31922571 DOI: 10.1093/rpd/ncz286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
There is a growing interest in the use of flattening filter free (FFF) beams due to the shorter treatment times. The reduction of head scatter suggests a better radiation protection to radiotherapy patients, considering the expected decrease in peripheral surface dose (PSD). In this work, PSD of flattened (FF) and FFF-photon beams was compared. A radiochromic film calibration method to reduce energy dependence was used. PSD was measured at distances from 2 to 50 cm to the field border for different square field sizes, modifying relevant clinical parameters. Also, clinical breast and prostate stereotactic body radiotherapy (SBRT) plans were studied. For square beams, FFF PSD is lower compared with FF PSD (differences ranging from 3 to 64%) and 10 MV FFF yields to the lowest value, for distances greater than 5 cm. For SBRT plans, near and far away from the field border, there is a reduction of PSD for FFF-beams, but the behavior at intermediate distances should be checked depending on the case.
Collapse
Affiliation(s)
| | - Aurora Vicedo-González
- Departmento de Física Médica, ERESA Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | - Joan Roselló-Ferrando
- Departmento de Física Médica, ERESA Hospital General Universitario de Valencia, Valencia, Spain
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
11
|
Schneider CW, Newhauser WD, Wilson LJ, Kapsch RP. A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs. ACTA ACUST UNITED AC 2019; 64:185017. [DOI: 10.1088/1361-6560/ab303a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit 2018; 24:8500-8505. [PMID: 30472719 PMCID: PMC6276721 DOI: 10.12659/msm.910218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate the therapeutic role of flattening filter-free (FFF) mode in volumetric modulated arc therapy (VMAT) compared with flattening filter (FF) mode in patients with locally advanced nasopharyngeal carcinoma (NPC). MATERIAL AND METHODS Ten previously treated patients with NPC underwent treatment re-planning with FFF and FF VMAT. Radiotherapy dose distribution on planning target volume (PTV), organs at risk (OAR), target conformity index (CI), total monitor units (MUs), and therapeutic time were compared. RESULTS Maximum and mean radiotherapy dose in PTV and PGTV (primary lesions of NPC and cervical lymph node metastases) in FFF VMAT planning were significantly increased compared with FF VMAT planning, but PTV and OAR showed no significant differences. The CI value of PTV in FFF VMAT planning was significantly reduced compared with FF planning (P<0.05). No differences were found for the maximum radiotherapy dose in the spinal cord and left and right optic nerve, and the mean radiotherapy dose in the brainstem, left and right parotid gland (P>0.05). The maximum dose in the brainstem in the FFF planning was significantly higher compared with FF planning (P>0.05). The maximum radiotherapy dose in left and right crystalline lens (P<0.05) in FFF planning was significantly reduced compared with FF planning. The total hop count in FFF planning was significantly increased compared with FF planning (P<0.05). CONCLUSIONS Both 6 MV X-ray FFF mode and FF mode in the treatment of patients with NPC showed that FFF VMAT planning provided improved protection for OAR.
Collapse
Affiliation(s)
- Fei Jia
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dandan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital and Institute, Beijing, China (mainland)
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital and Institute, Beijing, China (mainland)
| | - Guowen Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
13
|
Rajamanickam T, Muthu S, Murugan P, Pathokonda M, Senthilnathan K, Arunai Nambi Raj N, Ramesh Babu P. Study of dosimetric properties of flattened and unflattened megavoltage x ray beam on high Z implant materials. J Appl Clin Med Phys 2018; 19:265-273. [PMID: 30267468 PMCID: PMC6236858 DOI: 10.1002/acm2.12451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Addition of high Z implants in the treatment vicinity or beam path is unavoidable in certain clinical situation. In this work, we study the properties of radiation interaction parameters such as mass attenuation coefficient (MAC), x ray beam transmission factor (indirect beam attenuation), interface effects like backscatter dose perturbation factor (BSDF) and forward dose perturbation factor (FDPF) for flattened (FF) and unflattened (UF) x ray beams. METHODS MAC for stainless steel and titanium alloy was measured using CC13 chamber with appropriate buildup in narrow beam geometry. The x ray beam transmission factors were measured for stainless steel and titanium alloy for different field size, off-axis, and depths. Profile analysis was performed using a radiation field analyzer (RFA) as a function of field size and depth to study the influence of phantom scattering and spectral variation in the beam. In addition, interface effects such as BSDF and FDPF were measured with gafchromic films at maximum BSDF peak position calculated using Acuros XB algorithm and with PPC40 chamber measured at exit side of high Z material, respectively. RESULTS The MAC in both cases decreases with increase in energy for stainless steel (SS) and titanium (Ti) alloy. The MAC increases with the change in x ray beam type from flattened to UF beam because of relatively lower mean energy. The x ray beam transmission factor increases with the increase in energy, field size, and depth owing to increase in penetration power phantom scatter, respectively. The measured BSDF and FDPF were found to be in good agreement with AXB algorithm. CONCLUSION The dosimetric properties of x ray photon beam were studied comprehensively in the presence of high Z material like stainless steel and titanium alloy using both flattened and UF beams to understand and incorporate the findings of various parameters in clinical condition due to the variation in energy spectrum from FF to UF x ray beam.
Collapse
Affiliation(s)
- Tamilarasan Rajamanickam
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka, India
| | - Sivakumar Muthu
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka, India
| | - Perumal Murugan
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka, India
| | - Muddappa Pathokonda
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka, India
| | | | - Narayanasamy Arunai Nambi Raj
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
14
|
Wang L, Ding GX. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system. J Appl Clin Med Phys 2018; 19:319-324. [PMID: 29896876 PMCID: PMC6036345 DOI: 10.1002/acm2.12367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 05/05/2018] [Indexed: 11/09/2022] Open
Abstract
Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system.
Collapse
Affiliation(s)
- Lilie Wang
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Asadi A, Razavi-Ratki SK, Jabbari K, Najafzadeh M, Nickfarjam A. Monte Carlo evaluation of the potential benefits of flattening filter free beams from the Oncor® clinical linear accelerator. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:281-302. [PMID: 29562568 DOI: 10.3233/xst-17315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To evaluate the potential privileges of flattening filter-free (FFF) photon beams from Oncor® linac for 6 MV and 18 MV energies. METHODS A Monte Carlo (MC) model of Oncor® linac was built using BEAMnrc MCCode and verified by the measured data using 6 MV and 18 MV energies. A comprehensive set of data was also characterized for MC model of Oncor® machine running with and without flattening filter (FF) for 6 MV and 18 MV beams in six field sizes. The investigated characteristics included mean energy, energy spectrum, photon spatial fluence, superficial dose, percent depth dose (PDD), dose output, and out-of-field dose with two indexes of lateral dose profile and isodose curve at three depths. RESULTS Using FFF enhanced the energy uniformity 3.4±0.11% (6 MV) and 2.05±0.09% (18 MV) times and improved dose output by factor of 2.91 (6 MV) and 4.2 (18 MV) on the central axis, respectively. Using FFF also reduced the PDD dependencies by 9.1% (6 MV) and 5.57% (18 MV). In addition, using FFF had a lower out-of-field dose due to the reduced head scatter and softer spectra. CONCLUSIONS The findings in this study suggested that using FFF, Oncor® machine could achieve better treatment results with lower dose toxicity and a shorter beam-on time.
Collapse
Affiliation(s)
- Amin Asadi
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seid Kazem Razavi-Ratki
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiology Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Keyvan Jabbari
- Medical Physics Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Najafzadeh
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, Paganetti H, Wang B, Wuu CS, George Xu X. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys 2017; 44:e391-e429. [DOI: 10.1002/mp.12462] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Stephen F. Kry
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Bryan Bednarz
- Department of Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | - Rebecca M. Howell
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Larry Dauer
- Departments of Medical Physics/Radiology; Memorial Sloan-Kettering Cancer Center; New York NY 10065 USA
| | - David Followill
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Eric Klein
- Department of Radiation Oncology; Washington University; Saint Louis MO 63110 USA
| | - Harald Paganetti
- Department of Radiation Oncology; Massachusetts General Hospital and Harvard Medical School; Boston MA 02114 USA
| | - Brian Wang
- Department of Radiation Oncology; University of Louisville; Louisville KY 40202 USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology; Columbia University; New York NY 10032 USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering; Rensselaer Polytechnic Institute; Troy NY 12180 USA
| |
Collapse
|
17
|
Covington EL, Ritter TA, Moran JM, Owrangi AM, Prisciandaro JI. Technical Report: Evaluation of peripheral dose for flattening filter free photon beams. Med Phys 2017; 43:4789. [PMID: 27487896 DOI: 10.1118/1.4958963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a comprehensive peripheral dose (PD) dataset for the two unflattened beams of nominal energy 6 and 10 MV for use in clinical care. METHODS Measurements were made in a 40 × 120 × 20 cm(3) (width × length × depth) stack of solid water using an ionization chamber at varying depths (dmax, 5, and 10 cm), field sizes (3 × 3 to 30 × 30 cm(2)), and distances from the field edge (5-40 cm). The effects of the multileaf collimator (MLC) and collimator rotation were also evaluated for a 10 × 10 cm(2) field. Using the same phantom geometry, the accuracy of the analytic anisotropic algorithm (AAA) and Acuros dose calculation algorithm was assessed and compared to the measured values. RESULTS The PDs for both the 6 flattening filter free (FFF) and 10 FFF photon beams were found to decrease with increasing distance from the radiation field edge and the decreasing field size. The measured PD was observed to be higher for the 6 FFF than for the 10 FFF for all field sizes and depths. The impact of collimator rotation was not found to be clinically significant when used in conjunction with MLCs. AAA and Acuros algorithms both underestimated the PD with average errors of -13.6% and -7.8%, respectively, for all field sizes and depths at distances of 5 and 10 cm from the field edge, but the average error was found to increase to nearly -69% at greater distances. CONCLUSIONS Given the known inaccuracies of peripheral dose calculations, this comprehensive dataset can be used to estimate the out-of-field dose to regions of interest such as organs at risk, electronic implantable devices, and a fetus. While the impact of collimator rotation was not found to significantly decrease PD when used in conjunction with MLCs, results are expected to be machine model and beam energy dependent. It is not recommended to use a treatment planning system to estimate PD due to the underestimation of the out-of-field dose and the inability to calculate dose at extended distances due to the limits of the dose calculation matrix.
Collapse
Affiliation(s)
- E L Covington
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - T A Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 and Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| | - J M Moran
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - A M Owrangi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - J I Prisciandaro
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, Paynter D, Thomas R. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol 2016; 61:8360-8394. [DOI: 10.1088/0031-9155/61/23/8360] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Owrangi AM, Roberts DA, Covington EL, Hayman JA, Masi KM, Lee C, Moran JM, Prisciandaro JI. Revisiting fetal dose during radiation therapy: evaluating treatment techniques and a custom shield. J Appl Clin Med Phys 2016; 17:34-46. [PMID: 27685109 PMCID: PMC5874082 DOI: 10.1120/jacmp.v17i5.6135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/31/2016] [Accepted: 03/28/2016] [Indexed: 11/23/2022] Open
Abstract
To create a comprehensive dataset of peripheral dose (PD) measurements from a new generation of linear accelerators with and without the presence of a newly designed fetal shield, PD measurements were performed to evaluate the effects of depth, field size, distance from the field edge, collimator angle, and beam modi-fiers for common treatment protocols and modalities. A custom fetal lead shield was designed and made for our department that allows external beam treatments from multiple angles while minimizing the need to adjust the shield during patient treatments. PD measurements were acquired for a comprehensive series of static fields on a stack of Solid Water. Additionally, PDs from various clinically relevant treatment scenarios for pregnant patients were measured using an anthropomorphic phantom that was abutted to a stack of Solid Water. As expected, the PD decreased as the distance from the field edge increased and the field size decreased. On aver-age, a PD reduction was observed when a 90° collimator rotation was applied and/or when the tertiary MLCs and jaws defined the field aperture. However, the effect of the collimator rotation (90° versus 0°) in PD reduction was not found to be clini-cally significant when the tertiary MLCs were used to define the field aperture. In the presence of both the MLCs and the fetal shield, the PD was reduced by 58% at a distance of 10 cm from the field edge. The newly designed fetal shield may effectively reduce fetal dose and is relatively easy to setup. Due to its design, we are able to use a broad range of treatment techniques and beam angles. We believe the acquired comprehensive PD dataset collected with and without the fetal shield will be useful for treatment teams to estimate fetal dose and help guide decisions on treat-ment techniques without the need to perform pretreatment phantom measurements.
Collapse
|
20
|
Maier J, Knott B, Maerz M, Loeschel R, Koelbl O, Dobler B. Simultaneous integrated boost (SIB) radiation therapy of right sided breast cancer with and without flattening filter - A treatment planning study. Radiat Oncol 2016; 11:111. [PMID: 27577561 PMCID: PMC5006633 DOI: 10.1186/s13014-016-0687-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the study was to compare the two irradiation modes with (FF) and without flattening filter (FFF) for three different treatment techniques for simultaneous integrated boost radiation therapy of patients with right sided breast cancer. METHODS An Elekta Synergy linac with Agility collimating device is used to simulate the treatment of 10 patients. Six plans were generated in Monaco 5.0 for each patient treating the whole breast and a simultaneous integrated boost (SIB) volume: intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and a tangential arc VMAT (tVMAT), each with and without flattening filter. Plan quality was assessed considering target coverage, sparing of the contralateral breast, the lungs, the heart and the normal tissue. All plans were verified by a 2D-ionisation-chamber-array and delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. RESULTS Significantly best target coverage and homogeneity was achieved using VMAT FFF with V95% = (98.7 ± 0.8) % and HI = (8.2 ± 0.9) % for the SIB and V95% = (98.3 ± 0.7) % for the PTV, whereas tVMAT showed significantly lowest doses to the contralateral organs at risk with a Dmean of (0.7 ± 0.1) Gy for the contralateral lung, (1.0 ± 0.2) Gy for the contralateral breast and (1.4 ± 0.2) Gy for the heart. All plans passed the gamma evaluation with a mean passing rate of (99.2 ± 0.8) %. Delivery times were significantly reduced for VMAT and tVMAT but increased for IMRT, when FFF was used. Lowest delivery times were observed for tVMAT FFF with (1:20 ± 0:07) min. CONCLUSION Balancing target coverage, OAR sparing and delivery time, VMAT FFF and tVMAT FFF are considered the preferable of the investigated treatment options in simultaneous integrated boost irradiation of right sided breast cancer for the combination of an Elekta Synergy linac with Agility and the treatment planning system Monaco 5.0.
Collapse
Affiliation(s)
- Johannes Maier
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Bernadette Knott
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Manuel Maerz
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Rainer Loeschel
- Ostbayerische Technische Hochschule Regensburg, Faculty of Computer Science and Mathematics, Regensburg, Germany
| | - Oliver Koelbl
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Barbara Dobler
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| |
Collapse
|
21
|
Dufreneix S, Ostrowsky A, Rapp B, Daures J, Bordy JM. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field. Med Phys 2016; 43:4085. [DOI: 10.1118/1.4953207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Valdenaire S, Mailleux H, Fau P. Modeling of flattening filter free photon beams with analytical and Monte Carlo TPS. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Dobler B, Khemissi A, Obermeier T, Hautmann MG, Katsilieri Z, Kölbl O. Re-irradiating spinal column metastases using IMRT and VMAT with and without flattening filter - a treatment planning study. Radiat Oncol 2016; 11:33. [PMID: 26932561 PMCID: PMC4774147 DOI: 10.1186/s13014-016-0603-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 01/16/2023] Open
Abstract
Background The aim of this study was to investigate the potential of the flattening filter free (FFF) mode of a linear accelerator for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for patients with in-field recurrence of vertebral metastases. Methods An Elekta Synergy Linac with Agility™ head is used to simulate the treatment of ten patients with locally recurrent spinal column metastases. Four plans were generated for each patient treating the vertebrae sparing the spinal cord: Dual arc VMAT and nine field step and shoot IMRT each with and without flattening filter. Plan quality was assessed considering target coverage and sparing of the spinal cord and normal tissue. All plans were verified by a 2D-ionisation-chamber-array, peripheral doses were measured and compared to calculations. Delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Results Target coverage, homogeneity index and conformity index were comparable for both flat and flattening filter free beams. The volume of the spinal cord receiving the allowed maximum dose to keep the risk of radiation myelopathy at 0 % was at the same time significantly reduced to below the clinically relevant 1 ccm using FFF mode. In addition the mean dose deposited in the surrounding healthy tissue was significantly reduced in the FFF mode. All four techniques showed equally good gamma scores for plan verification. FFF plans required considerably more MU per fraction dose. Regardless of the large number of MU, out-of-field point dose was significantly lower for FFF plans, with an average reduction of 33 % and mean delivery time was significantly reduced by 22 % using FFF beams. When compared to IMRT FF, VMAT FFF offered even a reduction of 71 % in delivery time and 45 % in peripheral dose. Conclusions FFF plans showed a significant improvement in sparing of normal tissue and the spinal cord, keeping target coverage and homogeneity comparable. In addition, delivery times were significantly reduced for FFF treatments, minimizing intrafractional motion as well as strain for the patient. Shortest delivery times were achieved using VMAT FFF. For radiotherapy of spinal column metastases VMAT FFF may therefore be considered the preferable treatment option for the combination of Elekta Synergy Linacs and Oncentra® External Beam v4.5 treatment planning system.
Collapse
Affiliation(s)
- Barbara Dobler
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Amine Khemissi
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Tina Obermeier
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Matthias G Hautmann
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Zaira Katsilieri
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | - Oliver Kölbl
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| |
Collapse
|
24
|
Feng Z, Yue H, Zhang Y, Wu H, Cheng J, Su X. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode. Radiat Oncol 2016; 11:30. [PMID: 26921246 PMCID: PMC4769502 DOI: 10.1186/s13014-016-0601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022] Open
Abstract
Purpose Through the Monte Carlo (MC) simulation of 6 and 10 MV flattening-filter-free (FFF) beams from Varian TrueBeam accelerator, this study aims to find the best incident electron distribution for further studying the small field characteristics of these beams. Methods By incorporating the training materials of Varian on the geometry and material parameters of TrueBeam Linac head, the 6 and 10 MV FFF beams were modelled using the BEAMnrc and DOSXYZnrc codes, where the percentage depth doses (PDDs) and the off-axis ratios (OARs) curves of fields ranging from 4 × 4 to 40 × 40 cm2 were simulated for both energies by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively. The beam quality and relative output factor (ROF) were calculated. The simulations and measurements were compared using Gamma analysis method provided by Verisoft program (PTW, Freiburg, Germany), based on which the optimal MC model input parameters were selected and were further used to investigate the beam characteristics of small fields. Results The Full Width Half Maximum (FWHM), mono-energetic energy and angular spread of the resultant incident Gaussian radial intensity electron distribution were 0.75 mm, 6.1 MeV and 0.9° for the nominal 6 MV FFF beam, and 0.7 mm, 10.8 MeV and 0.3° for the nominal 10 MV FFF beam respectively. The simulation was mostly comparable to the measurement. Gamma criteria of 1 mm/1 % (local dose) can be met by all PDDs of fields larger than 1 × 1 cm2, and by all OARs of no larger than 20 × 20 cm2, otherwise criteria of 1 mm/2 % can be fulfilled. Our MC simulated ROFs agreed well with the measured ROFs of various field sizes (the discrepancies were less than 1 %), except for the 1 × 1 cm2 field. Conclusions The MC simulation agrees well with the measurement and the proposed model parameters can be clinically used for further dosimetric studies of 6 and 10 MV FFF beams.
Collapse
Affiliation(s)
- Zhongsu Feng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Haizhen Yue
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Yibao Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Hao Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Jinsheng Cheng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Xu Su
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| |
Collapse
|
25
|
Flattening filter free technique in breath-hold treatments of left-sided breast cancer: The effect on beam-on time and dose distributions. Radiother Oncol 2016; 118:194-8. [DOI: 10.1016/j.radonc.2015.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 11/18/2022]
|
26
|
Fogliata A, Fleckenstein J, Schneider F, Pachoud M, Ghandour S, Krauss H, Reggiori G, Stravato A, Lohr F, Scorsetti M, Cozzi L. Flattening filter free beams from TrueBeam and Versa HD units: Evaluation of the parameters for quality assurance. Med Phys 2015; 43:205. [DOI: 10.1118/1.4938060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Xiao Y, Kry SF, Popple R, Yorke E, Papanikolaou N, Stathakis S, Xia P, Huq S, Bayouth J, Galvin J, Yin FF. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J Appl Clin Med Phys 2015; 16:5219. [PMID: 26103482 PMCID: PMC5690108 DOI: 10.1120/jacmp.v16i3.5219] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/06/2015] [Accepted: 01/23/2015] [Indexed: 11/23/2022] Open
Abstract
This report describes the current state of flattening filter‐free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high‐dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out‐of‐field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity‐modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated. PACS number: 87.53.‐j, 87.53.Bn, 87.53.Ly, 87.55.‐x, 87.55.N‐, 87.56.bc
Collapse
Affiliation(s)
- Ying Xiao
- Thomas Jefferson University Hospital.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jank J, Kragl G, Georg D. Impact of a flattening filter free linear accelerator on structural shielding design. Z Med Phys 2014; 24:38-48. [DOI: 10.1016/j.zemedi.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
|
29
|
Zavgorodni S. Monte Carlo investigation into feasibility and dosimetry of flat flattening filter free beams. Phys Med Biol 2013; 58:7699-713. [PMID: 24140752 DOI: 10.1088/0031-9155/58/21/7699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Flattening filter free (FFF) beams due to their non-uniformity, are sub-optimal for larger field sizes. The purpose of this study was to investigate the incident electron beam distributions that would produce flat FFF (F4) beams without the use of a flattening filter (FF). Monte Carlo (MC) simulations with BEAMnrc and DOSXYZnrc codes have been performed to evaluate feasibility of this approach. The dose distributions in water for open 6 MV beams were simulated using the Varian 21EX linac head model, which will be called the FF model. The FF was then removed from the FF model, and MC simulations were performed using (1) 6 MeV electrons incident on the target and (2) a 6 MeV electron beam with electron angular distributions optimized to provide as flat dose profiles as possible. Configuration (1) represents FFF beam while configuration (2) allowed producing a F4 beam. Optimizations have also been performed to produce flattest profiles for a set of dose rates (DRs) in the range from 1.25 to 2.4 of the DR of FF beam. Profiles and percentage depth doses (PDDs) from 6 MV F4 beams have been calculated and compared to those from the FF beam. Calculated profiles demonstrated improved flatness of the FFF beams. In fact, up to field sizes within the circle of 35 cm diameter the flatness of F4 beam at dmax was better or comparable to that of FF beam. At 20 cm off-axis the dose increased from 52% for FFF to 92% for F4 beam. Also, profiles of F4 beams did not change considerably with depth. PDDs from F4 beams were similar to those of the FFF beam. The DR for the largest modeled (44 cm diameter) F4 beam was higher than the DR from FF beam by a factor of 1.25. It was shown that the DR can be increased while maintaining beam flatness, but at the cost of reduced field size.
Collapse
Affiliation(s)
- Sergei Zavgorodni
- Department of Medical Physics, BC Cancer Agency--Vancouver Island Centre, Vancouver, BC, Canada. Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Fogliata A, Clivio A, Vanetti E, Nicolini G, Belosi MF, Cozzi L. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding. Med Phys 2013; 40:101706. [DOI: 10.1118/1.4820443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|