1
|
Alpsten F, van Veelen B, Valdes-Cortez C, Berumen F, Ahnesjö A, Carlsson Tedgren Å. Improved heterogeneity handling in the collapsed cone dose engine for brachytherapy. Med Phys 2024. [PMID: 39470290 DOI: 10.1002/mp.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Model-based dose calculation algorithms (MBDCA), such as the Advanced Collapsed cone Engine (ACE) in Oncentra Brachy® can be used to overcome the limitations of the TG-43 formalism. ACE is a point kernel superposition algorithm that calculates the total dose separated into primary, first-scatter, and multiple-scatter dose. Albeit ACE yields accurate results under most circumstances, several studies have reported underestimations of the dose to cortical bone. These underestimations are likely caused by approximations in the handling of multiple-scatter dose for non-water media. Such would result in noticeable deviations where the multiple-scatter is a considerable fraction of the total dose, that is, at greater distances from the source. PURPOSE To improve and test the accuracy of the multiple-scatter dose component in the ACE algorithm to remedy its inaccuracy for non-water geometries. METHODS A careful analysis of the transport and absorption of the multiple-scatter energy fluence revealed an inconsistency in the scaling of energy absorption ratios for non-water media of the multiple-scatter kernel. We implemented an updated algorithm version, ACEcorr, and tested it for three different geometries. All had a single 192Ir-source at the center of a cubic water phantom with a box-shaped heterogeneity of either cortical bone or air, positioned at different distances from the source. Dose distributions for the three cases were calculated with ACE and ACEcorr and compared to Monte Carlo simulations, using the percentage dose difference ratio as figure-of-merit. All dose calculation methods scored separately the dose deposited by primary, first-scattered, and multiple-scattered photons. RESULTS The accuracy of the updated algorithm ACEcorr was superior to ACE. In the cortical bone heterogeneity, the mean percentage dose difference ratio for the total dose improved from- 11.7 % $ - 11.7{\mathrm{\% }}$ to- 2.2 % $ - 2.2{\mathrm{\% }}$ (in the worst case) by our update. Less impact was seen in the air heterogeneity, where both ACE and ACEcorr deviated less than 2% from the Monte Carlo results. The algorithm update mainly concerns the multiple-scattered dose component, but an accompanying data processing update also had a small effect ( ≤ $ \le $ 0.5% difference) on the primary and first-scattered dose. The calculation times were not affected. CONCLUSIONS The updates to ACE improved the accuracy of multiple-scatter dose calculation for non-water media, without increasing calculation times.
Collapse
Affiliation(s)
- Freja Alpsten
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Nuclear Medicin and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Francisco Berumen
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Canada
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Åsa Carlsson Tedgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Nuclear Medicin and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Meftahi M, Song WY. The dosimetric accuracy of a commercial model-based dose calculation algorithm in modeling a six-groove direction modulated brachytherapy tandem applicator. Phys Med Biol 2024; 69:215021. [PMID: 39378900 DOI: 10.1088/1361-6560/ad84b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective.With advancements in high-dose rate brachytherapy, the clinical translation of intensity modulated brachytherapy (IMBT) innovations necessitates utilization of model-based dose calculation algorithms (MBDCA) for accurate and rapid dose calculations. This study uniquely benchmarks a commercial MBDCA, BrachyVision ACUROSTM(BVA), against Monte Carlo (MC) simulations, evaluating dose distributions for a novel IMBT applicator, termed as thesix-grooveDirection Modulated Brachytherapy (DMBT) tandem, expanding beyond previous focus on partially shielded vaginal cylinder applicators, through a novel methodology.Approach.The DMBT tandem applicator, made of a tungsten alloy with six evenly spaced grooves, was simulated using the GEANT4 MC code. Subsequently, two main scenarios were created using the BVA and reproduced by the MC simulations: 'Source at the Center of the Water Phantom (SACWP)' and 'Source at the Middle of the Applicator (SAMA)' for three cubical virtual water phantoms (20 cm)3, (30 cm)3, and (40 cm)3. A track length estimator was utilized for dose calculation and 2D/3D scoring were performed. The difference in isodose surfaces/lines (i.e. coverage) at each voxel,ΔDIsodose Levels/Lines, was thus calculated for relevant normalization points (rref).Results.The coverage was comparable, based on 2D scoring, between the BVA and MC isodose surfaces/lines for the region of clinical relevance, (i.e. within 5 cm radius from the source) withΔDIsodose Lines(rref: 1 cm from the source) falling within 2% for the two scenarios for all phantom sizes. For the phantom (20 cm)3,ΔDIsodose Levels(3D scoring) recorded the range [-3.0% +6.5%] ([-7.4% +7.3%]) for 95% of the voxels of the same scoring volume for the SACWP (SAMA) scenario.Significance.The results indicated that the BVA could render comparable coverage as compared to the MC simulations in the region of clinical relevance for different phantom sizes.ΔDIsodose Linesmay offer an advantageous metric for evaluation of MBDCAs in clinical setting.
Collapse
Affiliation(s)
- Moeen Meftahi
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
| | - William Y Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
3
|
Radcliffe BA, Kim Y, Raffi J, Ayala-Peacock DN, Stephens SJ, Chino J, Meltsner S, Craciunescu O. Retrospective assessment of HDR brachytherapy dose calculation methods in locally advanced cervical cancer patients: AcurosBV vs. AAPM TG43 formalism. J Appl Clin Med Phys 2024:e14549. [PMID: 39382834 DOI: 10.1002/acm2.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE This retrospective analysis was completed to investigate the use of a model-based dose calculation algorithm (MBDCA) AcurosBV, for use in HDR BT treatments for locally advanced cervical cancer treated with tandem and ovoid applicators with interstitial needles. METHODS A cohort of 32 patients receiving post-EBRT HDR brachytherapy boost with a prescription dose of 5.5 Gy × 5 fractions to the high-risk clinical target volume (CTVHR) were selected for this study. For standard TG43 dose calculation, applicators were manually digitized on the planning images, while for AcurosBV calculations, solid renderings of Titanium Fletcher Suite Delclos (FSD) applicators included in BrachyVision were matched to those used clinically and Ti needles were manually digitized. The dose was recalculated using Varian's AcurosBV 13.5 and dose-to-medium-in-medium (Dm,m) was reported. EQD2 values for targets and organs at risk were compared between dose calculation formalisms. D90% and D98% values were reported for the high and intermediate-risk CTVs, andD 2 c m 3 ${\mathrm{\ D}}_{{\mathrm{2\ c}}{{\mathrm{m}}}^{\mathrm{3}}}$ values were reported for OARs including bladder, rectum, sigmoid, bowel, and vagina. Due to variability within the patient cohort, the dosimetric impact of AcurosBV was investigated corresponding to planning image modality (CT vs. CBCT), presence of Ti needles, and contrast within vaginal balloons used to stabilize implants. AcurosBV showed lower dosimetric values for all plans compared to TG43. RESULTS The average ± standard deviation of dosimetric reduction in D90% was 4.33 ± 0.09% for CTVHR and 4.12 ± 0.09% for CTVIR. The reduction to OARsD 2 c m 3 ${\mathrm{\ D}}_{{\mathrm{2\ c}}{{\mathrm{m}}}^{\mathrm{3}}}$ was: 4.99 ± 0.15% for bladder, 7.87 ± 0.16% for rectum, 5.79 ± 0.17% for sigmoid, 6.91 ± 0.14% for bowel, and 4.55 ± 0.14% for vagina. CONCLUSIONS AcurosBV should be utilized for HDR BT GYN cases, treated with tandem and ovoid applicators, with high degrees of heterogeneity and calculated in tandem with TG43.
Collapse
Affiliation(s)
- Billie Ann Radcliffe
- Department of Radiation Oncology, Cape Fear Valley Health, Fayetteville, North Carolina, USA
| | - Yongbok Kim
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Raffi
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Diandra N Ayala-Peacock
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah J Stephens
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Junzo Chino
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sheridan Meltsner
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Oana Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Boyle C, Mourtada F, Anne R, Wan S, Chen Y, Vinogradskiy Y, Taleei R. Comprehensive commissioning of a cone beam CT imaging ring for treatment of HDR GYN patients. Brachytherapy 2024:S1538-4721(24)00117-X. [PMID: 39266424 DOI: 10.1016/j.brachy.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE A new mobile cone beam computed tomography (CBCT) imaging ring (IRm, Elekta, v2.10.6, Veenendaal, Netherlands) has recently been proposed for brachytherapy to improve procedure efficiency. We describe the commissioning process and end-to-end tests for GYN HDR brachytherapy employing IRm CBCT imaging. MATERIALS AND METHODS Commissioning included imaging isocenter test, 3D image quality, 2D imaging quality, image dose, and tube characteristics. CIRS HDR GYN phantom and Venezia CT/MR gynecological applicator were used to perform end-to-end (E2E) tests and optimize workflow. Venezia applicator and four interstitial needles were inserted into the phantom and IRm CBCT images were acquired. Phantom and applicator were scanned with CT scanner (Siemens SOMATOM go.Open Pro) using department's pelvis imaging protocol. MR imaging was performed using 0.35T MR Linac TRUFI pulse sequence. CBCT images were registered to CT and MR using rigid registration to assess image quality and applicator geometry fidelity. RESULTS All physics tests passed within acceptance tolerances. Registration of CBCT images to MR and CT scans was acceptable for applicator placement. Applicator registration of CBCT images to CT demonstrated excellent agreement of most distal source dwell position (<1 mm). Slice thickness was also measured to be 1.25 mm, within 0.5 mm of its nominal value. CONCLUSION Based on E2E and commissioning results, IRm is an appropriate tool for brachytherapy treatment planning. This study demonstrated good image quality in GYN phantom and Venezia applicator using the IRm. Distal source dwell position agreement between CBCT and CT was acceptable for clinical use.
Collapse
Affiliation(s)
- Cullen Boyle
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Rani Anne
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Shuying Wan
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Yingxuan Chen
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Reza Taleei
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA.
| |
Collapse
|
5
|
Robitaille M, Ménard C, Famulari G, Béliveau-Nadeau D, Enger SA. 169Yb-based high dose rate intensity modulated brachytherapy for focal treatment of prostate cancer. Brachytherapy 2024; 23:523-534. [PMID: 39038997 DOI: 10.1016/j.brachy.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE This study compares conventional 192Ir-based high dose rate brachytherapy (HDR-BT) with 169Yb-based HDR intensity modulated brachytherapy (IMBT) for focal prostate cancer treatment. Additionally, the study explores the potential to generate less invasive treatment plans with IMBT by reducing the number of catheters needed to achieve acceptable outcomes. METHODS AND MATERIALS A retrospective dosimetric study of ten prostate cancer patients initially treated with conventional 192Ir-based HDR-BT and 5-14 catheters was employed. RapidBrachyMCTPS, a Monte Carlo-based treatment planning system was used to calculate and optimize dose distributions. For 169Yb-based HDR IMBT, a custom 169Yb source combined with 0.8 mm thick platinum shields placed inside 6F catheters was used. Furthermore, dose distributions were investigated when iteratively removing catheters for less invasive treatments. RESULTS With IMBT, the urethra D10 and D0.1cc decreased on average by 15.89 and 15.65 percentage points (pp) and the rectum V75 and D2cc by 1.53 and 11.54 pp, respectively, compared to the conventional clinical plans. Similar trends were observed when the number of catheters decreased. On average, there was an observed increase in PTV V150 from 2.84 pp with IMBT when utilizing all catheters to 8.83 pp when four catheters were removed. PTV V200 increased from 0.42 to 2.96 pp on average. Hotspots in the body were however lower with IMBT compared to conventional clinical plans. CONCLUSIONS 169Yb-based HDR IMBT for focal treatment of prostate cancer has the potential to successfully deliver clinically acceptable, less invasive treatment with reduced dose to organs at risk.
Collapse
Affiliation(s)
- Maude Robitaille
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Cynthia Ménard
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | - Gabriel Famulari
- Department of Radiation Oncology, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Shirin A Enger
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Ito K, Ishikawa Y, Teramura S, Yamada T. Feasibility of the analytical dose calculation method for Au-198 brachytherapy. Phys Med 2024; 125:104501. [PMID: 39217788 DOI: 10.1016/j.ejmp.2024.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE A dose calculation algorithm Computed Tomography (CT)-based analytical dose calculation method (CTanly), which can correct for subject inhomogeneity and size-dependent scatter doses, was applied to the 198Au seed. In this study, we evaluated the effectiveness of the CTanly method by comparing the gold standard Monte Carlo (MC) method and the conventional TG43 method on two virtual phantoms and patient CT images simulating oral cancer. METHODS As virtual phantoms, a water phantom and a heterogeneous phantom with soft tissue inserted cubic fat, lung, and bone were used. A 2-mm-thick lead plate was also inserted into the heterogeneous phantom as a dose attenuator. Virtual 198Au seeds and a 2-mm-thick lead plate were placed on the patient CT images. Dose distributions obtained via the TG43 and CTanly methods were compared with those of the MC by gamma analysis with 2%/2-mm thresholds. The computation durations were also compared. RESULTS In the water phantom, dose distributions comparable to those obtained via the MC method were obtained regardless of the algorithm. For the inhomogeneity phantom and patient case, the CTanly method showed an improvement in the gamma passing rate and dose distributions similar to those of the MC method were obtained. The computation time, which was days with the MC method, was reduced to minutes with the CTanly method. CONCLUSIONS The CTanly method is effective for 198Au seed dose calculations and takes a shorter time to obtain the dose distributions than the MC method.
Collapse
Affiliation(s)
- Kengo Ito
- Division of Radiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 983-8536, Japan.
| | - Yojiro Ishikawa
- Division of Radiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 983-8536, Japan
| | - Satoshi Teramura
- Division of Radiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 983-8536, Japan
| | - Takayuki Yamada
- Division of Radiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 983-8536, Japan
| |
Collapse
|
7
|
Xiong T, Cai J, Zhou F, Liu B, Zhang J, Wu Q. An end-to-end deep convolutional neural network-based dose engine for parotid gland cancer seed implant brachytherapy. Med Phys 2024; 51:6365-6377. [PMID: 38753975 DOI: 10.1002/mp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Seed implant brachytherapy (SIBT) is a promising treatment modality for parotid gland cancers (PGCs). However, the current clinical standard dose calculation method based on the American Association of Physicists in Medicine (AAPM) Task Group 43 (TG-43) Report oversimplifies patient anatomy as a homogeneous water phantom medium, leading to significant dose calculation errors due to heterogeneity surrounding the parotid gland. Monte Carlo Simulation (MCS) can yield accurate dose distributions but the long computation time hinders its wide application in clinical practice. PURPOSE This paper aims to develop an end-to-end deep convolutional neural network-based dose engine (DCNN-DE) to achieve fast and accurate dose calculation for PGC SIBT. METHODS A DCNN model was trained using the patient's CT images and TG-43-based dose maps as inputs, with the corresponding MCS-based dose maps as the ground truth. The DCNN model was enhanced based on our previously proposed model by incorporating attention gates (AGs) and large kernel convolutions. Training and evaluation of the model were performed using a dataset comprising 188 PGC I-125 SIBT patient cases, and its transferability was tested on an additional 16 non-PGC head and neck cancers (HNCs) I-125 SIBT patient cases. Comparison studies were conducted to validate the superiority of the enhanced model over the original one and compare their overall performance. RESULTS On the PGC testing dataset, the DCNN-DE demonstrated the ability to generate accurate dose maps, with percentage absolute errors (PAEs) of 0.67% ± 0.47% for clinical target volume (CTV) D90 and 1.04% ± 1.33% for skin D0.1cc. The comparison studies revealed that incorporating AGs and large kernel convolutions resulted in 8.2% (p < 0.001) and 3.1% (p < 0.001) accuracy improvement, respectively, as measured by dose mean absolute error. On the non-PGC HNC dataset, the DCNN-DE exhibited good transferability, achieving a CTV D90 PAE of 1.88% ± 1.73%. The DCNN-DE can generate a dose map in less than 10 ms. CONCLUSIONS We have developed and validated an end-to-end DCNN-DE for PGC SIBT. The proposed DCNN-DE enables fast and accurate dose calculation, making it suitable for application in the plan optimization and evaluation process of PGC SIBT.
Collapse
Affiliation(s)
- Tianyu Xiong
- Image Processing Center, Beihang University, Beijing, People's Republic of China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Fugen Zhou
- Image Processing Center, Beihang University, Beijing, People's Republic of China
| | - Bo Liu
- Image Processing Center, Beihang University, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, People's Republic of China
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Chevé P, Charbonneau P, Carrier JF, Kamio Y. A finite volume approach to dosimetric calculations in diffusing alpha-emitters radiation therapy. Phys Med Biol 2024; 69:175016. [PMID: 39102856 DOI: 10.1088/1361-6560/ad6b71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Objective.In diffusing alpha-emitters radiation therapy ('Alpha DaRT'), the diffusion-leakage (DL) model is used to determine the spatial distributions of the emitters and the corresponding alpha dose, critical for a successful treatment. This work first introduces a finite volume (FV) approach to develop numerical schemes to simulate the DL model in one, two and three dimensions then presents how variations over realistic ranges of the DL model parameters related to desorption, diffusion and leakage processes affect the alpha dose distribution and the position of the clinically significant alpha particle10Gy isodose. This work also presents the effects of three modeling approximations: two source geometry approximations (solid cylinder instead of hollow, pixelized cross section instead of circular), and one dosimetric approximation (single-source dose superposition instead of multiple-sources direct dose calculation).Approach.The introduced FV approach was used to obtain spatial distributions of the emitters, from which the corresponding alpha dose distributions were calculated under the assumption of a local deposition of the alpha particles' energies. Variation ranges of the DL model parameters were based on previously published data. For each modeling approximation studied, the error and relative error on the alpha dose distribution were calculated and the displacement of the10Gy isodose was evaluated.Main results.Over realistic ranges, the desorption probabilities, diffusion lengths, and leakage probabilities affect the position of the alpha particle10Gy isodose by∼0.1mm,∼1.5mm and∼0.5mm, respectively. The three modeling approximations studied have a negligible effect on the alpha particle10Gy isodose position, with displacements⩽0.01mm.Significance.This work quantitatively evaluates the relative importance of different parameters and approximations in Alpha-DaRT alpha dose calculations based on their impact not only on the dose variation at a given distance from the source but also on the displacement of clinically significant isodoses.
Collapse
Affiliation(s)
- P Chevé
- Département de physique, Université de Montréal, Montréal, Québec, Canada
| | - P Charbonneau
- Département de physique, Université de Montréal, Montréal, Québec, Canada
| | - J-F Carrier
- Département de physique, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Y Kamio
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
9
|
Fagerstrom JM. Practical experience with initial quality assurance of a high dose rate brachytherapy grid-based Boltzmann solver algorithm. J Appl Clin Med Phys 2024; 25:e14392. [PMID: 38742858 PMCID: PMC11302815 DOI: 10.1002/acm2.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The purpose of this study was to validate the use of a model-based dose calculation algorithm (MBDCA), Acuros BV, for high dose rate brachytherapy treatment planning for a community-based hospital with a Bravos afterloader. Based on published AAPM recommendations, this work details a practical approach for community-based clinics to complete initial validation of Acuros BV, in order to add a MBDCA to a TG-43 based brachytherapy treatment planning program. METHODS Source dimensions and materials used in Acuros BV and TG-43 source models were compared to the physical source. TG-186 testing was completed with standardized test cases externally calculated with Monte Carlo compared to locally calculated with Acuros BV. Point doses calculated using TG-43 were compared to those calculated with Acuros BV in water at various dose grid settings. Secondary dose check software was used to evaluate dose distributions resembling clinical patient plans, both in water and on CT datasets representative of patient anatomy. RESULTS The major source of discrepancy of source models was the length of modeled steel cable. TG-186 testing showed that the largest differences between Monte Carlo and Acuros BV dose distributions were located along the source axis for cases calculated in water, as well as located in regions of high dose gradients and within the applicator for the case calculated with a generic shielded applicator. An audit of point doses calculated with both TG-43 and Acuros BV in water found that dose grid settings significantly affected agreement. Secondary dose check software indicated that Acuros BV functioned satisfactorily, and a 5% threshold was adopted for secondary dose checks on gynecologic plans. CONCLUSION This validation process indicated that Acuros BV met expected standards and affirmed its suitability for integration into this clinical practice's brachytherapy treatment planning.
Collapse
Affiliation(s)
- Jessica M. Fagerstrom
- Department of Radiation OncologyUniversity of WashingtonSeattleWashingtonUSA
- Department of Radiation OncologyKaiser PermanenteSeattleWashingtonUSA
| |
Collapse
|
10
|
Failing T, Hensley FW, Keil B, Zink K. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Phys Med Biol 2024; 69:165002. [PMID: 39009012 DOI: 10.1088/1361-6560/ad638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.
Collapse
Affiliation(s)
- T Failing
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
| | - F W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- Department for Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - K Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
11
|
Srivastava S, Venugopal AK, Singh MN. Effect of model-based dose-calculation algorithms in high dose rate brachytherapy of cervical carcinoma. Rep Pract Oncol Radiother 2024; 29:300-308. [PMID: 39144272 PMCID: PMC11321785 DOI: 10.5603/rpor.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Task Group 43 (TG-43) formalism does not consider the tissue and applicator heterogeneities. This study is to compare the effect of model-based dose calculation algorithms, like Advanced Collapsed Cone Engine (ACE), on dose calculation with the TG-43 dose calculation formalism in patients with cervical carcinoma. Materials and methods 20 patients of cervical carcinoma treated with a high dose rate of intracavitary brachytherapy were prospectively studied. The target volume and organs at risk (OARs) were contoured in the Oncentra treatment planning system (Elekta, Veenendaal, The Netherlands). All patients were planned with cobalt-60 (Co-60) and iridium-192 (Ir-192) sources with doses of 21 Gy in 3 fractions. These plans were calculated with TG-43 formalism and a model-based dose calculation algorithm ACE. The dosimetric parameters of TG-43 and ACE-based plans were compared in terms of target coverage and OAR doses. Results For Co-60-based plans, the percentage differences in the D90 and V100 values for high-risk clinical target volume (HR-CTV) were 0.36 ± 0.43% and 0.17 ± 0.31%, respectively. For the bladder, rectum and sigmoid, the percentage differences for D2cc volumes were -0.50 ± 0.51%, -0.16 ± 0.53% and -0.37 ± 1.21%, respectively. For Ir-192-based plans, the percentage difference in the D90 for HR-CTV was 0.54 ± 0.79%, while V100 was 0.24 ± 0.29%. For the bladder, rectum and sigmoid, the doses to 2cc volume were 0.35 ± 1.06%, 0.99 ± 0.74% and 0.74 ± 1.92%, respectively. No significant differences were found in the dosimetric parameters calculated with ACE and TG-43. Conclusion The ACE algorithm reduced doses to OARs and targets. However, ACE and TG-43 did not show significant differences in the dosimetric parameters of the target and OARs with both sources.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Radiotherapy, King George’s Medical University, Lucknow, India
| | | | - Moirangthem Nara Singh
- Department of Radiation Oncology, Regional Institute of Medical Sciences, Manipur, India
| |
Collapse
|
12
|
Ibáñez P, Villa-Abaunza A, Udías JM. Impact on the estimated dose of different tissue assignment strategies during partial breast irradiations with INTRABEAM. Brachytherapy 2024; 23:470-477. [PMID: 38705803 DOI: 10.1016/j.brachy.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Partial breast irradiations with electronic brachytherapy or kilovoltage intraoperative radiotherapy devices such as Axxent or INTRABEAM are becoming more common every day. Breast is mainly composed of glandular and adipose tissues, which are not always clearly disentangled in planning breast CTs. In these cases, breast tissues are replaced with an average soft tissue, or even water. However, at kilovoltage energies, this may lead to large differences in the delivered dose, due to the dominance of photoelectric effect. Therefore, the aim of this work was to study the effect on the dose prescribed in breast with the INTRABEAM device using different soft tissue assignment strategies that would replace the adipose and glandular tissues that constitute the breast in cases where these tissues cannot be adequately distinguished in a CT scan. METHODS AND MATERIALS Dose was computed with a Monte Carlo code in five patients with a 3 cm diameter INTRABEAM spherical applicator. Tissues within the breast were assigned following six different strategies: one based on the TG-43 recommendations, representing the whole breast as water of unity density, another one also water-based but with CT derived density, and the other four also based on CT-derived densities, using a single tissue resulting from different mixes of glandular and adipose tissues. These were compared against the reference dose computed in an accurately segmented CT, following TG-186 recommendations. Relative differences and dose ratios between the reference and the other tissue assignment strategies were obtained in three regions of interest inside the breast. RESULTS AND CONCLUSIONS Dose planning in water-based tissues was found inaccurate for breast treatment with INTRABEAM, as it would incur in up to 30% under-prescription of dose. If accurate soft tissue assignments in the breast cannot be safely done, a single-tissue composition of 80% adipose and 20% glandular tissue, or even a 100% adipose tissue, would be recommended to avoid dose under-prescription.
Collapse
Affiliation(s)
- Paula Ibáñez
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.
| | - Amaia Villa-Abaunza
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
13
|
van Wagenberg T, Voncken R, van Beveren C, Berbee M, van Limbergen E, Verhaegen F, Paiva Fonseca G. Time-resolved clinical dose volume metrics, calculations and predictions based on source tracking measurements and uncertainties to aid treatment verification and error detection for HDR brachytherapy-a proof-of-principle study. Phys Med Biol 2024; 69:135006. [PMID: 38870948 DOI: 10.1088/1361-6560/ad580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.
Collapse
Affiliation(s)
- Teun van Wagenberg
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Robert Voncken
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Celine van Beveren
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evert van Limbergen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Chen ZJ, Li XA, Brenner DJ, Hellebust TP, Hoskin P, Joiner MC, Kirisits C, Nath R, Rivard MJ, Thomadsen BR, Zaider M. AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy. Med Phys 2024; 51:3850-3923. [PMID: 38721942 DOI: 10.1002/mp.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024] Open
Abstract
Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.
Collapse
Affiliation(s)
- Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Taran P Hellebust
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter Hoskin
- Mount Vernon Cancer Center, Mount Vernon Hospital, Northwood, UK
- University of Manchester, Manchester, UK
| | - Michael C Joiner
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian Kirisits
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
15
|
Lo AC, Ronckers C, Aznar MC, Avanzo M, van Dijk I, Kremer LCM, Gagliardi G, Howell RM, Rancati T, Constine LS, Marcus KJ. Breast Hypoplasia and Decreased Lactation From Radiation Therapy in Survivors of Pediatric Malignancy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:549-559. [PMID: 34627655 DOI: 10.1016/j.ijrobp.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Breast hypoplasia and impaired lactation are poorly studied sequelae of chest radiation therapy (RT) in children. The Pediatric Normal Tissue Effects in the Clinic female breast task force aimed to quantitate the radiation dose-volume effects on these endpoints. METHODS AND MATERIALS A literature search was conducted of peer-reviewed manuscripts evaluating breast hypoplasia and lactation after chest RT in children, yielding 789 abstracts. Only 2 studies on children irradiated at <4 years of age for angioma of the breast provided dosimetric data correlated with breast hypoplasia. For patients who received brachytherapy, the dose was converted to external beam RT in equivalent 2 Gy fractions (DEBRT), although the limitations of this type of mathematical conversion need to be recognized. We calculated relative risks (RR) and 95% confidence intervals (95% CIs) based on these data. Only 1 study was relevant to the lactation endpoint, in which patients were given RT for Hodgkin lymphoma at age 14 to 40 years. RESULTS The 3 studies involved 206 patients in total. In patients <4 years old at the time of RT, the prevalence of patient-perceived breast hypoplasia was 38% (RR 2.5; 95% CI, 1.3-4.6) after DEBRT of <0.34 Gy, 61% (RR 4.0; 95% CI, 2.1-7.4) after DEBRT 0.34-0.97 Gy, and 97% (RR 6.3; 95% CI, 3.6-10.8) after DEBRT ≥0.97 Gy to the breast anlage. A simple linear regression model (r = 0.72; P < .001) showed that the treated breast was smaller than the untreated breast by 13% at DEBRT = 0.5 Gy, 20% at DEBRT = 1 Gy, 32% at DEBRT = 2 Gy, 51% at DEBRT = 4 Gy, 66% at DEBRT = 6 Gy, 79% at DEBRT = 8 Gy, and 90% at DEBRT = 10 Gy. The risk of unsuccessful breastfeeding was 39% after a median mediastinal dose of 41 Gy, compared with 21% in a sibling control group (P = .04). RT dose of ≥42 Gy was not associated with less breastfeeding success compared with <42 Gy, and data on lower doses were unavailable. CONCLUSIONS Based on extremely limited data, young adults exposed to thoracic RT as children seem to be at significant risk of breast hypoplasia and impaired lactation. Doses as low as 0.3 Gy to immature breasts can cause breast hypoplasia. Additional studies are needed to quantify dose and technique effects with modern RT indications. Prospective collection of clinical outcomes and dosimetric factors would enhance our understanding of RT-induced breast hypoplasia and impaired lactation.
Collapse
Affiliation(s)
- Andrea C Lo
- Department of Radiation Oncology, BC Cancer, Vancouver, British Columbia, Canada.
| | - Cecile Ronckers
- Department of Pediatric Oncology, Prinses Maxima Centrum, Utrecht, the Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Irma van Dijk
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leontien C M Kremer
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Giovanna Gagliardi
- Department of Medical Physics, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Rebecca M Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Jafarzadeh H, Antaki M, Mao X, Duclos M, Maleki F, Enger SA. Penalty weight tuning in high dose rate brachytherapy using multi-objective Bayesian optimization. Phys Med Biol 2024; 69:115024. [PMID: 38670145 DOI: 10.1088/1361-6560/ad4448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Objective.Treatment plan optimization in high dose rate brachytherapy often requires manual fine-tuning of penalty weights for each objective, which can be time-consuming and dependent on the planner's experience. To automate this process, this study used a multi-criteria approach called multi-objective Bayesian optimization with q-noisy expected hypervolume improvement as its acquisition function (MOBO-qNEHVI).Approach.The treatment plans of 13 prostate cancer patients were retrospectively imported to a research treatment planning system, RapidBrachyMTPS, where fast mixed integer optimization (FMIO) performs dwell time optimization given a set of penalty weights to deliver 15 Gy to the target volume. MOBO-qNEHVI was used to find patient-specific Pareto optimal penalty weight vectors that yield clinically acceptable dose volume histogram metrics. The relationship between the number of MOBO-qNEHVI iterations and the number of clinically acceptable plans per patient (acceptance rate) was investigated. The performance time was obtained for various parameter configurations.Main results.MOBO-qNEHVI found clinically acceptable treatment plans for all patients. With increasing the number of MOBO-qNEHVI iterations, the acceptance rate grew logarithmically while the performance time grew exponentially. Fixing the penalty weight of the tumour volume to maximum value, adding the target dose as a parameter, initiating MOBO-qNEHVI with 25 parallel sampling of FMIO, and running 6 MOBO-qNEHVI iterations found solutions that delivered 15 Gy to the hottest 95% of the clinical target volume while respecting the dose constraints to the organs at risk. The average acceptance rate for each patient was 89.74% ± 8.11%, and performance time was 66.6 ± 12.6 s. The initiation took 22.47 ± 7.57 s, and each iteration took 7.35 ± 2.45 s to find one Pareto solution.Significance.MOBO-qNEHVI combined with FMIO can automatically explore the trade-offs between treatment plan objectives in a patient specific manner within a minute. This approach can reduce the dependency of plan quality on planner's experience and reduce dose to the organs at risk.
Collapse
Affiliation(s)
- Hossein Jafarzadeh
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Majd Antaki
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Ximeng Mao
- mila-Quebec AI Institute, Montréal, Quebec, Canada
| | - Marie Duclos
- McGill University Health Center, Montreal, Canada
| | - Farhard Maleki
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada
- mila-Quebec AI Institute, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Gao Y, Chang CW, Mandava S, Marants R, Scholey JE, Goette M, Lei Y, Mao H, Bradley JD, Liu T, Zhou J, Sudhyadhom A, Yang X. MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study. Sci Rep 2024; 14:11166. [PMID: 38750148 PMCID: PMC11096170 DOI: 10.1038/s41598-024-61869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | | | - Raanan Marants
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Scholey
- Department of Radiation Oncology, The University of California, San Francisco, CA, 94143, USA
| | - Matthew Goette
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Tian Liu
- Radiation Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA.
| |
Collapse
|
18
|
Kalinowski J, Enger SA. RapidBrachyTG43: A Geant4-based TG-43 parameter and dose calculation module for brachytherapy dosimetry. Med Phys 2024; 51:3746-3757. [PMID: 38252746 DOI: 10.1002/mp.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The AAPM TG-43U1 formalism remains the clinical standard for dosimetry of low- and high-energy γ $\gamma$ -emitting brachytherapy sources. TG-43U1 and related reports provide consensus datasets of TG-43 parameters derived from various published measured data and Monte Carlo simulations. These data are used to perform standardized and fast dose calculations for brachytherapy treatment planning. PURPOSE Monte Carlo TG-43 dosimetry parameters are commonly derived to characterize novel brachytherapy sources. RapidBrachyTG43 is a module of RapidBrachyMCTPS, a Monte Carlo-based treatment planning system, designed to automate this process, requiring minimal user input to prepare Geant4-based Monte Carlo simulations for a source. RapidBrachyTG43 may also perform a TG-43 dose to water-in-water calculation for a plan, substantially accelerating the same calculation performed using RapidBrachyMCTPS's Monte Carlo dose calculation engine. METHODS TG-43 parametersS K / A $S_K/A$ , Λ $\Lambda$ ,g L ( r ) $g_L(r)$ , andF ( r , θ ) $F(r,\theta)$ were calculated using three commercial source models, one each of125 $^{125}$ I,192 $^{192}$ Ir, and60 $^{60}$ Co, and were benchmarked to published data. TG-43 dose to water was calculated for a clinical breast brachytherapy plan and was compared to a Monte Carlo dose calculation with all patient tissues, air, and catheters set to water. RESULTS TG-43 parameters for the three simulated sources agreed with benchmark datasets within tolerances specified by the High Energy Brachytherapy Dosimetry working group. A gamma index comparison between the TG-43 and Monte Carlo dose-to-water calculations with a dose difference and difference to agreement criterion of 1%/1 mm yielded a 98.9% pass rate, with all relevant dose volume histogram metrics for the plan agreeing within 1%. Performing a TG-43-based dose calculation provided an acceleration of dose-to-water calculation by a factor of 165. CONCLUSIONS Determination of TG-43 parameter data for novel brachytherapy sources may now be facilitated by RapidBrachyMCTPS. These parameter datasets and existing consensus or published datasets may also be used to determine the TG-43 dose for a plan in RapidBrachyMCTPS.
Collapse
Affiliation(s)
- Jonathan Kalinowski
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
19
|
Quetin S, Bahoric B, Maleki F, Enger SA. Deep learning for high-resolution dose prediction in high dose rate brachytherapy for breast cancer treatment. Phys Med Biol 2024; 69:105011. [PMID: 38604185 DOI: 10.1088/1361-6560/ad3dbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective.Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computational time limits the practical application of MC simulations. Prior research used deep learning (DL) for dose prediction as an alternative to MC simulations. While accurate dose predictions akin to MC were attained, graphics processing unit limitations constrained these predictions to large voxels of 3 mm × 3 mm × 3 mm. This study aimed to enable dose predictions as accurate as MC simulations in 1 mm × 1 mm × 1 mm voxels within a clinically acceptable timeframe.Approach.Computed tomography scans of 98 breast cancer patients treated with Iridium-192-based HDR BT were used: 70 for training, 14 for validation, and 14 for testing. A new cropping strategy based on the distance to the seed was devised to reduce the volume size, enabling efficient training of 3D DL models using 1 mm × 1 mm × 1 mm dose grids. Additionally, novel DL architecture with layer-level fusion were proposed to predict MC simulated dose to medium-in-medium (Dm,m). These architectures fuse information from TG-43 dose to water-in-water (Dw,w) with patient tissue composition at the layer-level. Different inputs describing patient body composition were investigated.Main results.The proposed approach demonstrated state-of-the-art performance, on par with the MCDm,mmaps, but 300 times faster. The mean absolute percent error for dosimetric indices between the MC and DL-predicted complete treatment plans was 0.17% ± 0.15% for the planning target volumeV100, 0.30% ± 0.32% for the skinD2cc, 0.82% ± 0.79% for the lungD2cc, 0.34% ± 0.29% for the chest wallD2ccand 1.08% ± 0.98% for the heartD2cc.Significance.Unlike the time-consuming MC simulations, the proposed novel strategy efficiently converts TG-43Dw,wmaps into preciseDm,mmaps at high resolution, enabling clinical integration.
Collapse
Affiliation(s)
- Sébastien Quetin
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
| | - Boris Bahoric
- Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Department of Radiology, University of Florida, Gainesville, FL, United States of America
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
20
|
Berumen F, Ouellet S, Enger S, Beaulieu L. Aleatoric and epistemic uncertainty extraction of patient-specific deep learning-based dose predictions in LDR prostate brachytherapy. Phys Med Biol 2024; 69:085026. [PMID: 38484398 DOI: 10.1088/1361-6560/ad3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Objective.In brachytherapy, deep learning (DL) algorithms have shown the capability of predicting 3D dose volumes. The reliability and accuracy of such methodologies remain under scrutiny for prospective clinical applications. This study aims to establish fast DL-based predictive dose algorithms for low-dose rate (LDR) prostate brachytherapy and to evaluate their uncertainty and stability.Approach.Data from 200 prostate patients, treated with125I sources, was collected. The Monte Carlo (MC) ground truth dose volumes were calculated with TOPAS considering the interseed effects and an organ-based material assignment. Two 3D convolutional neural networks, UNet and ResUNet TSE, were trained using the patient geometry and the seed positions as the input data. The dataset was randomly split into training (150), validation (25) and test (25) sets. The aleatoric (associated with the input data) and epistemic (associated with the model) uncertainties of the DL models were assessed.Main results.For the full test set, with respect to the MC reference, the predicted prostateD90metric had mean differences of -0.64% and 0.08% for the UNet and ResUNet TSE models, respectively. In voxel-by-voxel comparisons, the average global dose difference ratio in the [-1%, 1%] range included 91.0% and 93.0% of voxels for the UNet and the ResUNet TSE, respectively. One forward pass or prediction took 4 ms for a 3D dose volume of 2.56 M voxels (128 × 160 × 128). The ResUNet TSE model closely encoded the well-known physics of the problem as seen in a set of uncertainty maps. The ResUNet TSE rectum D2cchad the largest uncertainty metric of 0.0042.Significance.The proposed DL models serve as rapid dose predictors that consider the patient anatomy and interseed attenuation effects. The derived uncertainty is interpretable, highlighting areas where DL models may struggle to provide accurate estimations. The uncertainty analysis offers a comprehensive evaluation tool for dose predictor model assessment.
Collapse
Affiliation(s)
- Francisco Berumen
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| | - Samuel Ouellet
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| | - Shirin Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Luc Beaulieu
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
21
|
Xiao Z, Xiong T, Geng L, Zhou F, Liu B, Sun H, Ji Z, Jiang Y, Wang J, Wu Q. Automatic planning for head and neck seed implant brachytherapy based on deep convolutional neural network dose engine. Med Phys 2024; 51:1460-1473. [PMID: 37757449 DOI: 10.1002/mp.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Seed implant brachytherapy (SIBT) is an effective treatment modality for head and neck (H&N) cancers; however, current clinical planning requires manual setting of needle paths and utilizes inaccurate dose calculation algorithms. PURPOSE This study aims to develop an accurate and efficient deep convolutional neural network dose engine (DCNN-DE) and an automatic SIBT planning method for H&N SIBT. METHODS A cohort of 25 H&N patients who received SIBT was utilized to develop and validate the methods. The DCNN-DE was developed based on 3D-unet model. It takes single seed dose distribution from a modified TG-43 method, the CT image and a novel inter-seed shadow map (ISSM) as inputs, and predicts the dose map of accuracy close to the one from Monte Carlo simulations (MCS). The ISSM was proposed to better handle inter-seed attenuation. The accuracy and efficacy of the DCNN-DE were validated by comparing with other methods taking MCS dose as reference. For SIBT planning, a novel strategy inspired by clinical practice was proposed to automatically generate parallel or non-parallel potential needle paths that avoid puncturing bone and critical organs. A heuristic-based optimization method was developed to optimize the seed positions to meet clinical prescription requirements. The proposed planning method was validated by re-planning the 25 cases and comparing with clinical plans. RESULTS The absolute percentage error in the TG-43 calculation for CTV V100 and D90 was reduced from 5.4% and 13.2% to 0.4% and 1.1% with DCNN-DE, an accuracy improvement of 93% and 92%, respectively. The proposed planning method could automatically obtain a plan in 2.5 ± 1.5 min. The generated plans were judged clinically acceptable with dose distribution comparable with those of the clinical plans. CONCLUSIONS The proposed method can generate clinically acceptable plans quickly with high accuracy in dose evaluation, and thus has a high potential for clinical use in SIBT.
Collapse
Affiliation(s)
- Zhuo Xiao
- Image Processing Center, Beihang University, Beijing, People's Republic of China
| | - Tianyu Xiong
- School of Physics, Beihang University, Beijing, People's Republic of China
| | - Lishen Geng
- School of Physics, Beihang University, Beijing, People's Republic of China
| | - Fugen Zhou
- Image Processing Center, Beihang University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China
| | - Bo Liu
- Image Processing Center, Beihang University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China
| | - Haitao Sun
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Zhe Ji
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yuliang Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
22
|
Meftahi M, Song WY. The effect of vaginal cylinder inhomogeneity on the HDR brachytherapy dose calculations using Monte Carlo simulations. J Appl Clin Med Phys 2024; 25:e14228. [PMID: 38043126 PMCID: PMC10795442 DOI: 10.1002/acm2.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE To analytically assess the heterogeneity effect of vaginal cylinders (VC) made of high-density plastics on dose calculations, considering the prescription point (surface or 5 mm beyond the surface), and benchmark the accuracy of a commercial model-based dose calculation (MBDC) algorithm using Monte Carlo (MC) simulations. METHODS AND MATERIALS The GEANT4 MC code was used to simulate a commercial 192 Ir HDR source and VC, with diameters ranging from 20 to 35 mm, inside a virtual water phantom. Standard plans were generated from a commercial treatment planning system [TPS-BrachyVision ACUROS (BV)] optimized for a treatment length of 5 cm through two dose calculation approaches: (1) assuming all the environment as water (i.e., Dw,w-MC & Dw,w-TG43 ) and (2) accounting for the heterogeneity of VC applicators (i.e., Dw,w-App-MC & Dw,w-App-MBDC ). The compared isodose lines, and dose & energy difference maps were extracted for analysis. In addition, the dose difference on the peripheral surface, along the applicator and at middle of treatment length, as well as apical tip was evaluated. RESULTS The Dw,w-App-MC results indicated that the VC heterogeneity can cause a dose reduction of (up to) % 6.8 on average (for all sizes) on the peripheral surface, translating to 1 mm shrinkage of the isodose lines compared to Dw,w-MC . In addition, the results denoted that BV overestimates the dose on the peripheral surface and apical tip of about 3.7% and 17.9%, respectively, (i.e., Dw,w-App-MBDC vs Dw,w-App-MC ) when prescribing to the surface. However, the difference between the two were negligible at the prescription point when prescribing to 5 mm beyond the surface. CONCLUSION The VCs' heterogeneity could cause dose reduction when prescribing dose to the surface of the applicator, and hence increases the level of uncertainty. Thus, reviewing the TG43 results, in addition to ACUROS, becomes prudent, when evaluating the surface coverage at the apex.
Collapse
Affiliation(s)
- Moeen Meftahi
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - William Y. Song
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
23
|
Zhu J, Wang C, Teng S, Lu J, Lyu P, Zhang P, Xu J, Lu L, Teng GJ. Embedding expertise knowledge into inverse treatment planning for low-dose-rate brachytherapy of hepatic malignancies. Med Phys 2024; 51:348-362. [PMID: 37475484 DOI: 10.1002/mp.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Leveraging the precision of its radiation dose distribution and the minimization of postoperative complications, low-dose-rate (LDR) permanent seed brachytherapy is progressively adopted in addressing hepatic malignancies. PURPOSE The present study endeavors to devise a sophisticated treatment planning system (TPS) to optimize LDR brachytherapy for hepatic lesions. METHODS Our TPS encompasses four integral modules: multi-organ segmentation, seed distribution initialization, puncture pathway selection, and inverse dose planning. By amalgamating an array of deep learning models, the segmentation module proficiently labels 17 discrete abdominal targets within the images. We introduce a knowledge-based seed distribution initialization methodology that discerns the most analogous tumor shape in the reference treatment plan from the knowledge base. Subsequently, the seed distribution from the reference plan is transmuted to the current case, thus establishing seed distribution initialization. Furthermore, we parameterize the puncture needles and seeds, while concurrently constraining the puncture needle angle through the employment of a virtual puncture panel to augment planning algorithm efficiency. We also presented a user interface that includes a range of interactive features, seamlessly integrated with the treatment planning generation function. RESULTS The multi-organ segmentation module, which is trained by 50 cases of in-house CT scans and 694 cases of publicly available CT scans, achieved average Dice of 0.80 and Hausdorff distance of 5.2 mm in testing datasets. The results demonstrate that knowledge-based initialization exhibits a marked enhancement in expediting the convergence rate. Our TPS also demonstrates a dominant advantage in dose-volume-histogram criteria and execution time in comparison to commercial TPS. CONCLUSION The study proposes an innovative treatment planning system for low-dose-rate permanent seed brachytherapy for hepatic malignancies. We show that the generated treatment plans meet clinical requirement.
Collapse
Affiliation(s)
- Jianjun Zhu
- Hanglok-Tech Co., Ltd., Hengqin, China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | | | | | - Jian Lu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | | | | | - Jun Xu
- Nanjing University of Information Science & Technology, Nanjing, China
| | - Ligong Lu
- Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Antunes PCG, Siqueira PDTD, Shorto JMB, Yoriyaz H. Heterogeneous physical phantom for I-125 dose measurements and dose-to-medium determination. Brachytherapy 2024; 23:73-84. [PMID: 38016863 DOI: 10.1016/j.brachy.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE In this paper we present a further step in the implementation of a physical phantom designed to generate sets of "true" independent reference data as requested by TG-186, intending to address and mitigate the scarcity of experimental studies on brachytherapy (BT) validation in heterogeneous media. To achieve this, we incorporated well-known heterogeneous materials into the phantom in order to perform measurements of 125I dose distribution. The work aims to experimentally validate Monte Carlo (MC) calculations based on MBDCA and determine the conversion factors from LiF response to absorbed dose in different media, using cavity theory. METHODS AND MATERIALS The physical phantom was adjusted to incorporate tissue equivalent materials, such as: adipose tissue, bone, breast and lung with varying thickness. MC calculations were performed using MCNP6.2 code to calculate the absorbed dose in the LiF and the dose conversion factors (DCF). RESULTS The proposed heterogeneous phantom associated with the experimental procedure carried out in this work yielded accurate dose data that enabled the conversion of the LiF responses into absorbed dose to medium. The results showed a maximum uncertainty of 6.92 % (k = 1), which may be considered excellent for dosimetry with low-energy BT sources. CONCLUSIONS The presented heterogeneous phantom achieves the required precision in dose evaluations due to its easy reproducibility in the experimental setup. The obtained results support the dose conversion methodology for all evaluated media. The experimental validation of the DCF in different media holds great significance for clinical procedures, as it can be applied to other tissues, including water, which remains a widely utilized reference medium in clinical practice.
Collapse
Affiliation(s)
- Paula Cristina Guimarães Antunes
- Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, Sao Paulo, Brazil; Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Hélio Yoriyaz
- Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, Sao Paulo, Brazil
| |
Collapse
|
25
|
Fletcher EM, Ballester F, Beaulieu L, Morrison H, Poher A, Rivard MJ, Sloboda RS, Vijande J, Thomson RM. Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations. Med Phys 2024; 51:694-706. [PMID: 37665982 DOI: 10.1002/mp.16721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE A joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs). ACQUISITION AND VALIDATION METHODS Five test cases are developed: (1) a single model 6711 125 I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16 mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within ∼2.5% and global agreement was ∼2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and ∼20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5. DATA FORMAT AND USAGE NOTES Dose distributions for each set of MC and TPS calculations are available online (https://doi.org/10.52519/00005) along with input files and all other information necessary to repeat the calculations. POTENTIAL APPLICATIONS These data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.
Collapse
Affiliation(s)
- Elizabeth M Fletcher
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, Ontario, Canada
| | - Facundo Ballester
- Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV), Burjassot, Spain
| | - Luc Beaulieu
- Service de physique médicale et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Audran Poher
- Service de physique médicale et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
| | - Mark J Rivard
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ron S Sloboda
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Javier Vijande
- Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV), Burjassot, Spain
- Instituto de Física Corpuscular, IFIC (UV-CSIC), Burjassot, Spain
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Chang CW, Marants R, Gao Y, Goette M, Scholey JE, Bradley JD, Liu T, Zhou J, Sudhyadhom A, Yang X. Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning. Br J Radiol 2023; 96:20220907. [PMID: 37660372 PMCID: PMC10646631 DOI: 10.1259/bjr.20220907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced dual-energy CT (DECT) to derive accurate patient mass density maps. METHODS Seven tissue substitute MRI phantoms were used for validation including adipose, brain, muscle, liver, skin, spongiosa, 45% hydroxyapatite (HA) bone. MRI images were acquired using T1 weighted Dixon and T2 weighted short tau inversion recovery sequences. Training inputs are from MRI and twin-beam dual-energy images acquired at 120 kVp with gold/tin filters. The feasibility investigation included an empirical model and four residual networks (ResNet) derived from different training inputs and strategies by PDMI framework. PRN-MR-DE and RN-MR-DE denote ResNet (RN) trained with and without a physics constraint (P) using MRI (MR) and DECT (DE) images. PRN-DE stands for RN trained with a physics constraint using only DE images. A retrospective study using institutional patient data was also conducted to investigate the feasibility of the proposed framework. RESULTS For the tissue surrogate study, PRN-MR-DE, PRN-DE, and RN-MR-DE result in mean mass density errors: -0.72%/2.62%/-3.58% for adipose; -0.03%/-0.61%/-0.18% for muscle; -0.58%/-1.36%/-4.86% for 45% HA bone. The retrospective patient study indicated that PRN-MR-DE predicted the densities of soft tissue and bone within expected intervals based on the literature survey, while PRN-DE generated large density deviations. CONCLUSION The proposed PDMI framework can generate accurate mass density maps using MRI and DECT images. The supervised learning can further enhance model efficacy, making PRN-MR-DE outperform RN-MR-DE. The patient investigation also shows that the framework can potentially improve proton range uncertainty with accurate patient mass density maps. ADVANCES IN KNOWLEDGE PDMI framework is proposed for the first time to inform deep learning models by physics insights and leverage the information from MRI to derive accurate mass density maps.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - Raanan Marants
- Department of Radiation Oncology, Brigham & Women’s Hospital/Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts, United States
| | - Yuan Gao
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - Matthew Goette
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - Jessica E. Scholey
- Department of Radiation Oncology, The University of California, San Francisco, California, United States
| | - Jeffrey D. Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jun Zhou
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Brigham & Women’s Hospital/Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaofeng Yang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
27
|
Gao Y, Chang CW, Roper J, Axente M, Lei Y, Pan S, Bradley JD, Zhou J, Liu T, Yang X. Single energy CT-based mass density and relative stopping power estimation for proton therapy using deep learning method. Front Oncol 2023; 13:1278180. [PMID: 38074686 PMCID: PMC10702508 DOI: 10.3389/fonc.2023.1278180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Background The number of patients undergoing proton therapy has increased in recent years. Current treatment planning systems (TPS) calculate dose maps using three-dimensional (3D) maps of relative stopping power (RSP) and mass density. The patient-specific maps of RSP and mass density were obtained by translating the CT number (HU) acquired using single-energy computed tomography (SECT) with appropriate conversions and coefficients. The proton dose calculation uncertainty of this approach is 2.5%-3.5% plus 1 mm margin. SECT is the major clinical modality for proton therapy treatment planning. It would be intriguing to enhance proton dose calculation accuracy using a deep learning (DL) approach centered on SECT. Objectives The purpose of this work is to develop a deep learning method to generate mass density and relative stopping power (RSP) maps based on clinical single-energy CT (SECT) data for proton dose calculation in proton therapy treatment. Methods Artificial neural networks (ANN), fully convolutional neural networks (FCNN), and residual neural networks (ResNet) were used to learn the correlation between voxel-specific mass density, RSP, and SECT CT number (HU). A stoichiometric calibration method based on SECT data and an empirical model based on dual-energy CT (DECT) images were chosen as reference models to evaluate the performance of deep learning neural networks. SECT images of a CIRS 062M electron density phantom were used as the training dataset for deep learning models. CIRS anthropomorphic M701 and M702 phantoms were used to test the performance of deep learning models. Results For M701, the mean absolute percentage errors (MAPE) of the mass density map by FCNN are 0.39%, 0.92%, 0.68%, 0.92%, and 1.57% on the brain, spinal cord, soft tissue, bone, and lung, respectively, whereas with the SECT stoichiometric method, they are 0.99%, 2.34%, 1.87%, 2.90%, and 12.96%. For RSP maps, the MAPE of FCNN on M701 are 0.85%, 2.32%, 0.75%, 1.22%, and 1.25%, whereas with the SECT reference model, they are 0.95%, 2.61%, 2.08%, 7.74%, and 8.62%. Conclusion The results show that deep learning neural networks have the potential to generate accurate voxel-specific material property information, which can be used to improve the accuracy of proton dose calculation. Advances in knowledge Deep learning-based frameworks are proposed to estimate material mass density and RSP from SECT with improved accuracy compared with conventional methods.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Marian Axente
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Shaoyan Pan
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Jeffrey D. Bradley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Ouellet S, Lemaréchal Y, Berumen-Murillo F, Lavallée MC, Vigneault É, Martin AG, Foster W, Thomson RM, Després P, Beaulieu L. A Monte Carlo dose recalculation pipeline for durable datasets: an I-125 LDR prostate brachytherapy use case. Phys Med Biol 2023; 68:235001. [PMID: 37863069 DOI: 10.1088/1361-6560/ad058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Monte Carlo (MC) dose datasets are valuable for large-scale dosimetric studies. This work aims to build and validate a DICOM-compliant automated MC dose recalculation pipeline with an application to the production of I-125 low dose-rate prostate brachytherapy MC datasets. Built as a self-contained application, the recalculation pipeline ingested clinical DICOM-RT studies, reproduced the treatment into the Monte Carlo simulation, and outputted a traceable and durable dose distribution in the DICOM dose format. MC simulations with TG43-equivalent conditions using both TOPAS andegs_brachyMC codes were compared to TG43 calculations to validate the pipeline. The consistency of the pipeline when generating TG186 simulations was measured by comparing simulations made with both MC codes. Finally,egs_brachysimulations were run on a 240-patient cohort to simulate a large-scale application of the pipeline. Compared to line source TG43 calculations, simulations with both MC codes had more than 90% of voxels with a global difference under ±1%. Differences of 2.1% and less were seen in dosimetric indices when comparing TG186 simulations from both MC codes. The large-scale comparison ofegs_brachysimulations with treatment planning system dose calculation seen the same dose overestimation of TG43 calculations showed in previous studies. The MC dose recalculation pipeline built and validated against TG43 calculations in this work efficiently produced durable MC dose datasets. Since the dataset could reproduce previous dosimetric studies within 15 h at a rate of 20 cases per 25 min, the pipeline is a promising tool for future large-scale dosimetric studies.
Collapse
Affiliation(s)
- Samuel Ouellet
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Yannick Lemaréchal
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Francisco Berumen-Murillo
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Marie-Claude Lavallée
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Éric Vigneault
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - André-Guy Martin
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - William Foster
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Philippe Després
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, Quebec, QC, Canada
| |
Collapse
|
29
|
Fagerstrom JM. Practical experience commissioning MRI-compatible tandem and ring applicators for use with the Bravos HDR afterloader. J Appl Clin Med Phys 2023; 24:e14094. [PMID: 37469228 PMCID: PMC10647988 DOI: 10.1002/acm2.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Five complete MR-conditionally approved ring sets, including fifteen tandems, and two additional rings, were commissioned at an institution intending to use them in an MRI planning environment with a Bravos HDR brachytherapy remote afterloader. Channel length, radiograph, autoradiograph, ring offset, and treatment interrupt measurements were performed, and applicators were assessed in both CT and MRI. During commissioning, one ring was found to be defective and was returned to the manufacturer for a replacement. The eventual complete applicator suite (including the replacement ring) was found to follow the manufacturer-provided specifications, including those delineated in vendor-provided 3D virtual models and those defined within the manufacturer's instructions for use documentation. Based on this work, an offset correction of -0.4 cm will be used for all tested rings using the Bravos system's internal distal dwell position correction feature during treatment preparation. This study reiterated the requirement for careful commissioning of each applicator intended for clinical service considering the intended use and the planned clinical environment and work processes.
Collapse
Affiliation(s)
- Jessica M. Fagerstrom
- Radiation OncologyUniversity of WashingtonSeattleWashingtonUSA
- Kaiser PermanenteSeattleWashingtonUSA
| |
Collapse
|
30
|
Oliver S, Giménez-Alventosa V, Berumen F, Gimenez V, Beaulieu L, Ballester F, Vijande J. Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy. Z Med Phys 2023; 33:511-528. [PMID: 36509574 PMCID: PMC10751717 DOI: 10.1016/j.zemedi.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. METHODS AND MATERIALS Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. RESULTS The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (Λ). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within ±1%(±0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within ±1%(±0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within ±0.2% for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differences. Dose-volume histograms were in agreement with the reference data. CONCLUSIONS PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.
Collapse
Affiliation(s)
- Sandra Oliver
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain.
| | - Vicent Giménez-Alventosa
- Escuela de Ciencias, Ingeniería y Diseño, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 València, Spain; Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Francisco Berumen
- Département de Radio-Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, QC, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, QC, Canada
| | - Vicente Gimenez
- Departament de Física Teórica and IFIC, Universitat de València-CSIC, Dr. Moliner, 50, 46100 Burjassot, València, Spain
| | - Luc Beaulieu
- Département de Radio-Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, QC, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, QC, Canada
| | - Facundo Ballester
- Departamento de Física Atómica, Molecular y Nuclear. IRIMED, IIS-La Fe-Universitat de Valencia, 46100 Burjassot, Spain
| | - Javier Vijande
- Departamento de Física Atómica, Molecular y Nuclear. IRIMED, IIS-La Fe-Universitat de Valencia, 46100 Burjassot, Spain; Instituto de Física Corpuscular, IFIC (UV-CSIC), 46100 Burjassot, Spain
| |
Collapse
|
31
|
Akino Y, Shiomi H, Tsujimoto T, Hamatani N, Hirata T, Oda M, Takeshita A, Shimamoto H, Ogawa K, Murakami S. Inverse planning optimization with lead block effectively suppresses dose to the mandible in high-dose-rate brachytherapy for tongue cancer. Jpn J Radiol 2023; 41:1290-1297. [PMID: 37273111 PMCID: PMC10613594 DOI: 10.1007/s11604-023-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE In this study, we developed in-house software to evaluate the effect of the lead block (LB)-inserted spacer on the mandibular dose in interstitial brachytherapy (ISBT) for tongue cancer. In addition, an inverse planning algorithm for LB attenuation was developed, and its performance in mandibular dose reduction was evaluated. METHODS Treatment plans of 30 patients with tongue cancer treated with ISBT were evaluated. The prescribed dose was 54 Gy/9 fractions. An in-house software was developed to calculate the dose distribution based on the American Association of Physicists in Medicine (AAPM) Task Group No.43 (TG-43) formalism. The mandibular dose was calculated with consideration of the LB attenuation. The attenuation coefficient of the lead was computed using the PHITS Monte Carlo simulation. The software further optimized the treatment plans using an attraction-repulsion model (ARM) to account for the LB attenuation. RESULTS Compared to the calculation in water, the D2 cc of the mandible changed by - 2.4 ± 2.3 Gy (range, - 8.6 to - 0.1 Gy) when the LB attenuation was considered. The ARM optimization with consideration of the LB resulted in a - 2.4 ± 2.4 Gy (range, - 8.2 to 0.0 Gy) change in mandibular D2 cc. CONCLUSIONS This study enabled the evaluation of the dose distribution with consideration of the LB attenuation. The ARM optimization with lead attenuation further reduced the mandibular dose.
Collapse
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Hiroya Shiomi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomomi Tsujimoto
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy-Ion Therapy Center, Osaka, Japan
| | - Takero Hirata
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michio Oda
- Department of Medical Technology, Osaka University Hospital, Suita, Osaka, Japan
| | - Ami Takeshita
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroaki Shimamoto
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shumei Murakami
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
32
|
Ayala Alvarez DS, Watson PGF, Popovic M, Heng VJ, Evans MDC, Panet-Raymond V, Seuntjens J. Evaluation of Dosimetry Formalisms in Intraoperative Radiation Therapy of Glioblastoma. Int J Radiat Oncol Biol Phys 2023; 117:763-773. [PMID: 37150259 DOI: 10.1016/j.ijrobp.2023.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE The intraoperative radiotherapy in newly diagnosed glioblastoma multiforme (INTRAGO) clinical trial assesses survival in patients with glioblastoma treated with intraoperative radiation therapy (IORT) using the INTRABEAM. Treatment planning for INTRABEAM relies on vendor-provided in-water depth dose curves obtained according to the TARGeted Intraoperative radioTherapy (TARGIT) dosimetry protocol. However, recent studies have shown discrepancies between the estimated TARGIT and delivered doses. This work evaluates the effect of the choice of dosimetry formalism on organs at risk (OAR) doses. METHODS AND MATERIALS A treatment planning framework for INTRABEAM was developed to retrospectively calculate the IORT dose in 8 INTRAGO patients. These patients received an IORT prescription dose of 20 to 30 Gy in addition to external beam radiation therapy. The IORT dose was obtained using (1) the TARGIT method; (2) the manufacturer's V4.0 method; (3) the CQ method, which uses an ionization chamber Monte Carlo (MC) calculated factor; (4) MC dose-to-water; and (5) MC dose-to-tissue. The IORT dose was converted to 2 Gy fractions equivalent dose. RESULTS According to the TARGIT method, the OAR dose constraints were respected in all cases. However, the other formalisms estimated a higher mean dose to OARs and revealed 1 case where the constraint for the brain stem was exceeded. The addition of the external beam radiation therapy and TARGIT IORT doses resulted in 10 cases of OARs exceeding the dose constraints. The more accurate MC calculation of dose-to-tissue led to the highest dosimetric differences, with 3, 3, 2, and 2 cases (out of 8) exceeding the dose constraint to the brain stem, optic chiasm, optic nerves, and lenses, respectively. Moreover, the mean cumulative dose to brain stem exceeded its constraint of 66 Gy with the MC dose-to-tissue method, which was not evident with the current INTRAGO clinical practice. CONCLUSIONS The current clinical approach of calculating the IORT dose with the TARGIT method may considerably underestimate doses to nearby OARs. In practice, OAR dose constraints may have been exceeded, as revealed by more accurate methods.
Collapse
Affiliation(s)
| | | | | | - Veng Jean Heng
- Department of Physics and Medical Physics Unit, McGill University, Montreal, QC, Canada
| | | | - Valerie Panet-Raymond
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Jan Seuntjens
- Medical Physics Unit and; Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Puriparthi LV, Talluri AK, Akkineni NP, Bajwa HK, Tumu VR, Sresty NVNM, Alluri KR. Dosimetric Impact of Air Pockets in the Vaginal Cuff Brachytherapy Using Model-based Dose Calculation Algorithm. J Med Phys 2023; 48:373-377. [PMID: 38223798 PMCID: PMC10783181 DOI: 10.4103/jmp.jmp_88_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 01/16/2024] Open
Abstract
Background Endometrial cancer is the most common disease of the female reproductive system. Vaginal cuff brachytherapy (VCB) has intrinsic advantages compared to external beam therapy when treated with radiation. A single-channel cylinder is a standard applicator in VCB. The present study aims to estimate a change in the dose to vaginal mucosa due to air pockets between the cylinder and vaginal mucosa by calculating with the Acuros BV algorithm and comparing it to the Task Group 43 (TG-43) algorithm. Materials and Methods Patients who presented with air packets were included retrospectively. For each patient, three plans were created: the first plan used TG-43, the second plan used dose recalculation with Acuros BV, and the third plan was generated by re-optimization by Acuros BV. On the same axial computed tomography image, the point doses at the cylinder's surface and the displaced mucosa were recorded and the ratios were then estimated. Results The average volume of air pockets was 0.08 cc (range of 0.01-0.3 cc), and 84% of air pockets displaced the vaginal mucosa by ≥0.2 cm. The average ratios of dose were 0.77 ± 0.09 (1 standard deviation [SD]) and 0.78 ± 0.09 (1 SD) for TG-43 and Acuros BV algorithms, respectively. Due to the air pocket, mucosa received a reduced dose by an average of 22.72% and an average of 23.29% for TG-43 and Acuros BV, respectively. The maximum displacement of mucosa and the ratio of doses were negatively correlated for both. In the Optimized Acuros BV plan, total dwell time increased by 1.8% but no considerable change in the dose ratios. Conclusion The calculated dose of mucous membrane forced out of the cylinder surface by air pockets by the Acuros BV algorithm was nonsignificantly different from TG-43. Therefore, even in the presence of air pockets, the TG-43 algorithm for calculating the VCB dose is appropriate.
Collapse
Affiliation(s)
- Lakshmi Venkataramana Puriparthi
- Department of Radiation Physics, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Anil Kumar Talluri
- Department of Radiation Physics, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Naga Prasanthi Akkineni
- Department of Radiation Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Harjot Kaur Bajwa
- Department of Radiation Oncology, American Oncology Institute, Hyderabad, Telangana, India
| | - Venkatappa Rao Tumu
- Department of Physics, National Institute of Technology, Warangal, Telangana, India
| | - N. V. N. Madhusudhana Sresty
- Department of Radiation Physics, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Krishnam Raju Alluri
- Department of Radiation Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| |
Collapse
|
34
|
Fionda B, Bussu F, Placidi E, Rosa E, Lancellotta V, Parrilla C, Zinicola T, De Angeli M, Greco F, Rigante M, Massaccesi M, Gambacorta MA, Indovina L, De Spirito M, Tagliaferri L. Interventional Radiotherapy (Brachytherapy) for Nasal Vestibule: Novel Strategies to Prevent Side Effects. J Clin Med 2023; 12:6154. [PMID: 37834798 PMCID: PMC10573955 DOI: 10.3390/jcm12196154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Interventional radiotherapy (brachytherapy) has become the new therapeutic standard in the management of early stages nasal vestibule tumors; in fact it allows for high local control rates and low toxicity profiles. However, since more and more patients will receive interventional radiotherapy (brachytherapy) as primary treatment, it is desirable to implement novel strategies to reduce the dose to organs at risk with the future aim to result in further lowering long-term side effects. MATERIALS AND METHODS We were able to identify two different strategies to reduce dose to the treatment volume, including the implantation technique (the implant can be interstitial, endocavitary or mixed and the catheters may be placed either using the Paris system rules or the anatomical approach) and the dose distribution within the implant (the most commonly used parameter to consider is the dose non-uniformity ratio). We subsequently propose two novel strategies to reduce dose to organs at risk, including the use of metal shields for fixed organs as in the case of the eyes and the use of a mouth swab to push away mobile organs, such in the case of the mandible. We used two different algorithms to verify the values namely the TG-43 and the TG-186. RESULTS We provided an accurate literature review regarding strategies to reduce toxicity to the treatment volume, underlining the pros and cons of all implantation techniques and about the use dose non-uniformity ratio. Regarding the innovative strategies to reduce the dose to organs at risk, we investigated the use of eye shielding and the use of swabs to push away the mandible by performing an innovative calculation using two different algorithms in a series of three consecutive patients. Our results show that the dose reduction, both in the case of the mandible and in the case of eye shielding, was statistically significant. CONCLUSION Proper knowledge of the best implantation technique and dose non-uniformity ratio as highlighted by existing literature is mandatory in order to reduce toxicity within the treatment volume. With regard to the dose reduction to the organs at risk we have demonstrated that the use of eye shielding and mouth swab could play a pivotal role in clinical practice; in fact, they are effective at lowering the doses to the surrounding organs and do not require any change to the current clinical workflow.
Collapse
Affiliation(s)
- Bruno Fionda
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| | - Francesco Bussu
- Divisione di Otorinolaringoiatria, Azienda Ospedaliero Universitaria, 07100 Sassari, Italy;
- Dipartimento di Medicina, Chirurgia e Farmacia Università di Sassari, 00168 Sassari, Italy
| | - Elisa Placidi
- U.O.S.D. Fisica Medica e Radioprotezione, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.G.); (L.I.)
| | - Enrico Rosa
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Lancellotta
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| | - Claudio Parrilla
- U.O.C. Otorinolaringoiatria, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Tiziano Zinicola
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| | - Martina De Angeli
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| | - Francesca Greco
- U.O.S.D. Fisica Medica e Radioprotezione, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.G.); (L.I.)
| | - Mario Rigante
- U.O.C. Otorinolaringoiatria, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Mariangela Massaccesi
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| | - Maria Antonietta Gambacorta
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Indovina
- U.O.S.D. Fisica Medica e Radioprotezione, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.G.); (L.I.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Luca Tagliaferri
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy; (B.F.); (T.Z.); (M.D.A.); (M.M.); (M.A.G.)
| |
Collapse
|
35
|
Ni J, Gan G, Xu X. Quantitative study on dose distribution of Freiburg flap for keloid high-dose-rate brachytherapy based on MatriXX. J Appl Clin Med Phys 2023; 24:e14118. [PMID: 37593834 PMCID: PMC10476986 DOI: 10.1002/acm2.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE To quantify the dose distribution effect of insufficient scattering conditions in keloid HDR brachytherapy with Freiburg fFlap (FF) applicator. MATERIALS AND METHODS A phantom composed of FF applicator, MatriXX and solid water slices was designed and scanned for treatment planning. Bolus with different thicknesses were covered to offer different scatter conditions. Planar dose distributions were measured by MatriXX. The maximum value (Max), average value (Avg) and γ passing rate (3 mm/3%) were evaluated by the software MyQA Platform. RESULTS The maximum and average doses measured by MatriXX were lower than the calculated values. The difference increased as field size decreased. The Max value, found at 0.86 cm level in the two tube case, was -20.0%, and the avg value was -11.9%. All the γ values were less than 95%. This difference gradually decreased with increasing bolus thickness and the γ values were significantly improved. CONCLUSION MatriXX could be used for dose verification of HDR brachytherapy with an FF applicator. When the FF applicator was applied for keloid, insufficient scattering conditions would cause an insufficient target dose. This difference could be reduced by covering the bolus with different thicknesses on the applicator. The smaller the field, the thicker the bolus required.
Collapse
Affiliation(s)
- Jie Ni
- Radiation Therapy CenterThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Guanghui Gan
- Radiation Therapy CenterThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Xiaoting Xu
- Radiation Therapy CenterThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| |
Collapse
|
36
|
Meftahi M, Qiu RLJ, Patel P, Song WY, Yang X. A novel direction modulated brachytherapy technique for urethra sparing in high-dose-rate brachytherapy of prostate cancer. Radiother Oncol 2023; 186:109801. [PMID: 37423478 PMCID: PMC10528916 DOI: 10.1016/j.radonc.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Image-guided high-dose-rate (HDR) prostate brachytherapy is a safe and effective treatment option for prostate cancer patients; however, some patients still experience acute and late genitourinary (GU) toxicity. Studies have shown that urethral dose is associated with the incidence and severity of GU toxicity. Therefore, a technique that can further spare the urethra while ensuring adequate target coverage is highly desirable. Intensity modulated brachytherapy (IMBT) designs, such as rotating shield brachytherapy (RSBT), offer ideal dosimetry theoretically but are challenging to implement clinically due to the need for high precision in moving the treatment delivery mechanisms synchronized with the source loading. In this study, we propose a novel relatively easy-to-implement solution based on the direction modulated brachytherapy (DMBT) design concept, which does not involve moving parts and works effectively with the ubiquitous 192Ir source. MATERIALS AND METHODS The popular Varian VS2000 (VS) and GammaMedPlus (GMP) 192Ir sources, with outer diameters of 0.6 mm and 0.9 mm, respectively, were simulated using the GEANT4 Monte Carlo (MC) simulation code. The novel DMBT needle concept consists of a 14-gauge nitinol needle, which houses a platinum shield inside. A single groove, consistent with the outer diameter of each source, was incorporated inside the platinum shield to accommodate the HDR source. The maximum thickness of the shield was 1.1 mm (0.8 mm) for the VS (GMP) source. To evaluate the effectiveness of the DMBT needle concept in reducing urethral dose, 6 patient cases were studied and DMBT plans were created by replacing two needles close to the urethra with the DMBT needles. The dosimetric comparisons between the DMBT and reference clinical plans were done by assessing the dose-volume histogram (DVH) planning criteria for the target coverage and organs-at-risk. RESULTS The MC results showed that the use of the novel DMBT needle design with the VS source (GMP source) could reduce the dose by 49.6% (39.2%) at 1 cm from the needle behind the platinum shield, as compared to the unshielded side. Additionally, when using the same DVH planning criteria as the original plan, the DMBT plan with the VS (GMP) source reduced the maximum urethral dose by 10.3% ± 5.6% (8.1% ± 5.0%) and 17.7% ± 14.2% (16.6% ± 13.3%) for 0 mm and 2 mm margins, respectively, while maintaining equivalent V90% and D100 target coverage. CONCLUSION The novel DMBT technique offers a promising clinically implementable solution for sparing urethra, particularly in pre-apical region, without compromising the target coverage or increasing treatment time.
Collapse
Affiliation(s)
- Moeen Meftahi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, United States
| | - Richard Lei Jingyi Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, United States
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, United States
| | | | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, United States.
| |
Collapse
|
37
|
Mirzavand Boroujeni N, Richard JPP, Sterling D, Wilke C. A linear optimization model for high dose rate brachytherapy using a novel distance metric. Phys Med Biol 2023; 68:175018. [PMID: 37489861 DOI: 10.1088/1361-6560/acea55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Purpose.We propose a linear network-based optimization model (LNBM) for high dose rate brachytherapy (HDR-BT) that uses a novel distance metric to measure the discrepancy between the dose delivered and the prescription. Unlike models in the literature, LNBM takes advantage of the adjacency structure of the patients' voxels by formalizing them into a network.Methods.We apply LNBM to a set of 7 cervical cancer cases treated with HDR-BT. State-of-the-art commercial optimization software solves LNBM to global optimality. The results of LNBM are compared with those of inverse planning by simulated annealing (IPSA) based on tumor coverage, dosimetric indices for the critical organs at risk (OARs), isodose contour plots, and two metrics of homogeneity new to this work (hot-spots volumes and diameters).Results.LNBM produces plans with improved tumor coverage and with improved isodose contour plots and dosimetric indices for OARs that receive highest dose (bladder and rectum in this study) when compared with IPSA. Using new metrics of homogeneity, we also demonstrate that LNBM produces more homogeneous plans on these cases. An analysis of the solutions of LNBM shows that they use a significant part of the voxel network structure, providing evidence that the plans produced are different from those created using traditional penalty approaches and are more directly guided by the geometry of the patients' anatomy.Conclusions.The proposed linear network-based optimization model efficiently generates more homogeneous high quality treatment plans for HDR-BT.
Collapse
Affiliation(s)
- Nasim Mirzavand Boroujeni
- Department of Industrial and Systems Engineering, University of Minnesota, 100 Union Street SE, Minneapolis, MN 55455, United States of America
| | - Jean-Philippe P Richard
- Department of Industrial and Systems Engineering, University of Minnesota, 100 Union Street SE, Minneapolis, MN 55455, United States of America
| | - David Sterling
- Department of Radiation Oncology, University of Minnesota, 516 Delaware Street SE, Minneapolis MN, 55455, United States of America
| | - Christopher Wilke
- Department of Radiation Oncology, University of Minnesota, 516 Delaware Street SE, Minneapolis MN, 55455, United States of America
| |
Collapse
|
38
|
Karius A, Szkitsak J, Strnad V, Fietkau R, Bert C. Cone-beam CT imaging with laterally enlarged field of view based on independently movable source and detector. Med Phys 2023; 50:5135-5149. [PMID: 37194354 DOI: 10.1002/mp.16463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND CBCT imaging with field of views (FOVs) exceeding the size of scans acquired in the conventional imaging geometry, i.e. with opposing source and detector, is of high clinical importance for many medical fields. A novel approach for enlarged FOV scanning with one full-scan (EnFOV360) or two short-scans (EnFOV180) using an O-arm system arises from non-isocentric imaging based on independent source and detector rotations. PURPOSE The presentation, description, and experimental validation of this novel approach and the novel scanning techniques EnFOV360 and EnFOV180 for an O-arm system forms the scope of this work. METHODS We describe the EnFOV360, EnFOV180, and non-isocentric imaging techniques for the acquisition of laterally extended FOVs. For their experimental validation, scans of dedicated quality assurance as well as anthropomorphic phantoms were acquired, with the phantoms being placed both within the tomographic plane and at the longitudinal FOV border with and without lateral shifts from the gantry center. Based on this, geometric accuracy, contrast-noise-ratio (CNR) of different materials, spatial resolution, noise characteristics, as well as CT number profiles were quantitatively assessed. Results were compared to scans performed with the conventional imaging geometry. RESULTS With EnFOV360 and EnFOV180, we increased the in-plane size of acquired FOVs from 250 × 250 mm2 obtained for the conventional imaging geometry to up to 400 × 400 mm2 for the performed measurements. Geometric accuracy was very high for all scanning techniques with mean values ≤0.21 ± 0.11 mm. CNR and spatial resolution were comparable between isocentric and non-isocentric full-scans as well as EnFOV360, whereas substantial image quality deteriorations in this respect were observed for EnFOV180. Image noise in the isocenter was lowest for conventional full-scans with 13.4 ± 0.2 HU. For laterally shifted phantom positions, noise increased for conventional scans and EnFOV360, whereas noise reductions were observed for EnFOV180. Considering the anthropomorphic phantom scans, both EnFOV360 and EnFOV180 were comparable to conventional full-scans. CONCLUSION Both enlarged FOV techniques have high potential for imaging laterally extended FOVs. EnFOV360 revealed an image quality comparable to conventional full-scans in general. EnFOV180 showed an inferior performance particularly regarding CNR and spatial resolution.
Collapse
Affiliation(s)
- Andre Karius
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Juliane Szkitsak
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
39
|
Beaulieu L, Ballester F, Granero D, Tedgren ÅC, Haworth A, Lowenstein JR, Ma Y, Mourtada F, Papagiannis P, Rivard MJ, Siebert FA, Sloboda RS, Smith RL, Thomson RM, Verhaegen F, Fonseca G, Vijande J. AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy. Med Phys 2023; 50:e946-e960. [PMID: 37427750 DOI: 10.1002/mp.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 07/11/2023] Open
Abstract
The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for 192 Ir-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.
Collapse
Affiliation(s)
- Luc Beaulieu
- Service de Physique Médicale et Radioprotection et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
| | - Facundo Ballester
- Departamento de Física Atómica, Molecular y Nuclear, IRIMED, IIS-La Fe-Universitat de Valencia, Burjassot, Spain
| | - Domingo Granero
- Departamento de Física Atómica, Molecular y Nuclear, IRIMED, IIS-La Fe-Universitat de Valencia, Burjassot, Spain
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences (HMV), Radiation Physics, Linköping University, Linköping, Sweden
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Jessica R Lowenstein
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Yunzhi Ma
- Service de Physique Médicale et Radioprotection et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
| | - Firas Mourtada
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark J Rivard
- Department of Radiation Oncology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Frank-André Siebert
- Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ron S Sloboda
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan L Smith
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gabriel Fonseca
- Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Javier Vijande
- Departamento de Física Atómica, Molecular y Nuclear, IRIMED, IIS-La Fe-Universitat de Valencia, Burjassot, Spain
- Instituto de Física Corpuscular, IFIC (UV-CSIC), Burjassot, Spain
| |
Collapse
|
40
|
Lozares-Cordero S, Bermejo-Barbanoj C, Badías-Herbera A, Ibáñez-Carreras R, Ligorred-Padilla L, Ponce-Ortega JM, González-Pérez V, Gandía-Martínez A, Font-Gómez JA, Blas-Borroy O, González-Ibáñez D. An open-source development based on photogrammetry for a real-time IORT treatment planning system. Phys Med 2023; 112:102622. [PMID: 37331081 DOI: 10.1016/j.ejmp.2023.102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE This study presents a treatment planning system for intraoperative low-energy photon radiotherapy based on photogrammetry from real images of the surgical site taken in the operating room. MATERIAL AND METHODS The study population comprised 15 patients with soft-tissue sarcoma. The system obtains the images of the area to be irradiated with a smartphone or tablet, so that the absorbed doses in the tissue can be calculated from the reconstruction without the need for computed tomography. The system was commissioned using 3D printing of the reconstructions of the tumor beds. The absorbed doses at various points were verified using radiochromic films that were suitably calibrated for the corresponding energy and beam quality. RESULTS The average reconstruction time of the 3D model from the video sequence in the 15 patients was 229,6±7,0 s. The entire procedure, including video capture, reconstruction, planning, and dose calculation was 520,6±39,9 s. Absorbed doses were measured on the 3D printed model with radiochromic film, the differences between these measurements and those calculated by the treatment planning system were 1.4% at the applicator surface, 2.6% at 1 cm, 3.9% at 2 cm and 6.2% at 3 cm. CONCLUSIONS The study shows a photogrammetry-based low-energy photon IORT planning system, capable of obtaining real-time images inside the operating room, immediately after removal of the tumor and immediately before irradiation. The system was commissioned with radiochromic films measurements in 3D-printed model.
Collapse
Affiliation(s)
- Sergio Lozares-Cordero
- Physics and Radiation Protection Department, Miguel Servet University Hospital, Zaragoza, Spain.
| | | | - Alberto Badías-Herbera
- Higher Technical School of Industrial Engineering, Polytechnic University of Madrid, Spain
| | | | - Luis Ligorred-Padilla
- Esophagogastric Surgery and Sarcoma Unit (Department of General and Gastrointestinal Surgery), Miguel Servet University Hospital, Zaragoza, Spain
| | | | | | | | - José Antonio Font-Gómez
- Physics and Radiation Protection Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Olga Blas-Borroy
- Engineering and Maintenance Service, Miguel Servet University Hospital, Zaragoza, Spain
| | | |
Collapse
|
41
|
Berger D, Van Dyk S, Beaulieu L, Major T, Kron T. Modern Tools for Modern Brachytherapy. Clin Oncol (R Coll Radiol) 2023:S0936-6555(23)00182-6. [PMID: 37217434 DOI: 10.1016/j.clon.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This review aims to showcase the brachytherapy tools and technologies that have emerged during the last 10 years. Soft-tissue contrast using magnetic resonance and ultrasound imaging has seen enormous growth in use to plan all forms of brachytherapy. The era of image-guided brachytherapy has encouraged the development of advanced applicators and given rise to the growth of individualised 3D printing to achieve reproducible and predictable implants. These advances increase the quality of implants to better direct radiation to target volumes while sparing normal tissue. Applicator reconstruction has moved beyond manual digitising, to drag and drop of three-dimensional applicator models with embedded pre-defined source pathways, ready for auto-recognition and automation. The simplified TG-43 dose calculation formalism directly linked to reference air kerma rate of high-energy sources in the medium water remains clinically robust. Model-based dose calculation algorithms accounting for tissue heterogeneity and applicator material will advance the field of brachytherapy dosimetry to become more clinically accurate. Improved dose-optimising toolkits contribute to the real-time and adaptive planning portfolio that harmonises and expedites the entire image-guided brachytherapy process. Traditional planning strategies remain relevant to validate emerging technologies and should continue to be incorporated in practice, particularly for cervical cancer. Overall, technological developments need commissioning and validation to make the best use of the advanced features by understanding their strengths and limitations. Brachytherapy has become high-tech and modern by respecting tradition and remaining accessible to all.
Collapse
Affiliation(s)
- D Berger
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | - S Van Dyk
- Radiation Therapy Services, Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - L Beaulieu
- Service de Physique Médicale et Radioprotection, et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
| | - T Major
- Radiotherapy Centre, National Institute of Oncology, Budapest, Hungary; Department of Oncology, Semmelweis University, Budapest, Hungary
| | - T Kron
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| |
Collapse
|
42
|
Manna F, Pugliese M, Buonanno F, Gherardi F, Iannacone E, La Verde G, Muto P, Arrichiello C. Use of Thermoluminescence Dosimetry for QA in High-Dose-Rate Skin Surface Brachytherapy with Custom-Flap Applicator. SENSORS (BASEL, SWITZERLAND) 2023; 23:3592. [PMID: 37050652 PMCID: PMC10098582 DOI: 10.3390/s23073592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Surface brachytherapy (BT) lacks standard quality assurance (QA) protocols. Commercially available treatment planning systems (TPSs) are based on a dose calculation formalism that assumes the patient is made of water, resulting in potential deviations between planned and delivered doses. Here, a method for treatment plan verification for skin surface BT is reported. Chips of thermoluminescent dosimeters (TLDs) were used for dose point measurements. High-dose-rate treatments were simulated and delivered through a custom-flap applicator provided with four fixed catheters to guide the Iridium-192 (Ir-192) source by way of a remote afterloading system. A flat water-equivalent phantom was used to simulate patient skin. Elekta TPS Oncentra Brachy was used for planning. TLDs were calibrated to Ir-192 through an indirect method of linear interpolation between calibration factors (CFs) measured for 250 kV X-rays, Cesium-137, and Cobalt-60. Subsequently, plans were designed and delivered to test the reproducibility of the irradiation set-up and to make comparisons between planned and delivered dose. The obtained CF for Ir-192 was (4.96 ± 0.25) μC/Gy. Deviations between measured and TPS calculated doses for multi-catheter treatment configuration ranged from -8.4% to 13.3% with an average of 0.6%. TLDs could be included in clinical practice for QA in skin BT with a customized flap applicator.
Collapse
Affiliation(s)
- Francesco Manna
- Department of Physics “E. Pancini”, Federico II University, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati, Federico II University, 80146 Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics “E. Pancini”, Federico II University, 80126 Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, 80126 Naples, Italy
| | - Francesca Buonanno
- Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy
| | - Federica Gherardi
- Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy
| | - Eva Iannacone
- Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy
| | - Giuseppe La Verde
- Department of Physics “E. Pancini”, Federico II University, 80126 Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, 80126 Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
43
|
Mansour IR, Thomson RM. Haralick texture feature analysis for characterization of specific energy and absorbed dose distributions across cellular to patient length scales. Phys Med Biol 2023; 68. [PMID: 36731130 DOI: 10.1088/1361-6560/acb885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Objective.To investigate an approach for quantitative characterization of the spatial distribution of dosimetric data by introducing Haralick texture feature analysis in this context.Approach.Monte Carlo simulations are used to generate 3D arrays of dosimetric data for 2 scenarios: (1) cell-scale microdosimetry: specific energy (energy imparted per unit mass) in cell-scale targets irradiated by photon spectra (125I,192Ir, 6 MV); (2) tumour-scale dosimetry: absorbed dose in voxels for idealized models of125I permanent implant prostate brachytherapy, considering 'TG186' (realistic tissues including 0% to 5% intraprostatic calcifications; interseed attenuation) and 'TG43' (water model, no interseed attenuation) conditions. Five prominent Haralick features (homogeneity, contrast, correlation, local homogeneity, entropy) are computed and trends are interpreted using fundamental radiation physics.Main results.In the cell-scale scenario, the Haralick measures quantify differences in 3D specific energy distributions due to source spectra. For example, contrast and entropy are highest for125I reflecting the large variations in specific energy in adjacent voxels (photoelectric interactions; relatively short range of electrons), while 6 MV has the highest homogeneity with smaller variations in specific energy between voxels (Compton scattering dominates; longer range of electrons). For the tumour-scale scenario, the Haralick measures quantify differences due to TG186/TG43 simulation conditions and the presence of calcifications. For example, as calcifications increase from 0% to 5%, contrast increases while correlation decreases, reflecting the large differences in absorbed dose in adjacent voxels (higher absorbed dose in voxels with calcification due to photoelectric interactions).Significance.Haralick texture analysis provides a quantitative method for the characterization of 3D dosimetric distributions across cellular to tumour length scales, with promising future applications including analyses of multiscale tissue models, patient-specific data, and comparison of treatment approaches.
Collapse
Affiliation(s)
- Iymad R Mansour
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
44
|
Antaki M, Renaud MA, Morcos M, Seuntjens J, Enger SA. Applying the column generation method to the intensity modulated high dose rate brachytherapy inverse planning problem. Phys Med Biol 2023; 68. [PMID: 36791469 DOI: 10.1088/1361-6560/acbc63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Objective.Intensity modulated high dose rate brachytherapy (IMBT) is a rapidly developing application of brachytherapy where anisotropic dose distributions can be produced at each source dwell position. This technique is made possible by placing rotating metallic shields inside brachytherapy needles or catheters. By dynamically directing the radiation towards the tumours and away from the healthy tissues, a more conformal dose distribution can be obtained. The resulting treatment planning involves optimizing dwell position and shield angle (DPSA). The aim of this study was to investigate the column generation method for IMBT treatment plan optimization.Approach.A column generation optimization algorithm was developed to optimize the dwell times and shield angles. A retrospective study was performed on 10 prostate cases using RapidBrachyMCTPS. At every iteration, the plan was optimized with the chosen DPSA which would best improve the cost function that was added to the plan. The optimization process was stopped when the remaining DPSAs would not add value to the plan to limit the plan complexity.Main results.The average number of DPSAs and voxels were 2270 and 7997, respectively. The column generation approach yielded near-optimal treatment plans by using only 11% of available DPSAs on average in ten prostate cases. The coverage and organs at risk constraints passed in all ten cases.Significance.The column generation method produced high-quality deliverable prostate IMBT plans. The treatment plan quality reached a plateau, where adding more DPSAs had a minimal effect on dose volume histogram parameters. The iterative nature of the column generation method allows early termination of the treatment plan creation process as soon as the dosimetric indices from dose volume histogram satisfy the clinical requirements or if their values stabilize.
Collapse
Affiliation(s)
- Majd Antaki
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Marc-André Renaud
- Polytechnique Montréal, Department of Mathematical and Industrial Engineering, Montreal, Canada
| | - Marc Morcos
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States of America.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States of America
| | - Jan Seuntjens
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, H3H 2L9, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
45
|
Safigholi H, Chamberland MJP, Taylor REP, Martinov MP, Rogers DWO, Thomson RM. Update of the CLRP Monte Carlo TG-43 parameter database for high-energy brachytherapy sources. Med Phys 2023; 50:1928-1941. [PMID: 36542404 DOI: 10.1002/mp.16176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To update and extend version 2 of the Carleton Laboratory for Radiotherapy Physics (CLRP) TG-43 dosimetry database (CLRP_TG43v2) for high-energy (HE, ≥50 keV) brachytherapy sources (1 169 Yb, 23 192 Ir, 5 137 Cs, and 4 60 Co) using egs_brachy, an open-source EGSnrc application. A comprehensive dataset of TG-43 parameters is compiled, including detailed source descriptions, dose-rate constants, radial dose functions, 1D and 2D anisotropy functions, along-away dose-rate tables, Primary and Scatter Separated (PSS) dose tables, and mean photon energies escaping each source. The database also documents the source models which are freely distributed with egs_brachy. ACQUISITION AND VALIDATION METHODS Datasets are calculated after a recoding of the source geometries using the egs++ geometry package and its egs_brachy extensions. Air kerma per history is calculated in a 10 × 10 × $\,{\times}\, 10\,{\times}\,$ 0.05 cm3 voxel located 100 cm from the source along the transverse axis and then corrected for the lateral and thickness dimensions of the scoring voxel to give the air kerma on the central axis at a point 100 cm from the source's mid-point. Full-scatter water phantoms with varying voxel resolutions in cylindrical coordinates are used for dose calculations. Most data (except for 60 Co) are based on the assumption of charged particle equilibrium and ignore the potentially large effects of electron transport very close to the source and dose from initial beta particles. These effects are evaluated for four representative sources. For validation, data are compared to those from CLRP_TG43v1 and published data. DATA FORMAT AND ACCESS Data are available at https://physics.carleton.ca/clrp/egs_brachy/seed_database_v2 or http://doi.org/10.22215/clrp/tg43v2 including in Excel (.xlsx) spreadsheets, and are presented graphically in comparisons to previously published data for each source. POTENTIAL APPLICATIONS The CLRP_TG43v2 database has applications in research, dosimetry, and brachytherapy planning. This comprehensive update provides the medical physics community with more precise and in some cases more accurate Monte Carlo (MC) TG-43 dose calculation parameters, as well as fully benchmarked and described source models which are distributed with egs_brachy.
Collapse
Affiliation(s)
- Habib Safigholi
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Marc J P Chamberland
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Randle E P Taylor
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Martin P Martinov
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - D W O Rogers
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics (CLRP), Department of Physics, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Poher A, Berumen F, Ma Y, Perl J, Beaulieu L. Validation of the TOPAS Monte Carlo toolkit for LDR brachytherapy simulations. Phys Med 2023; 107:102516. [PMID: 36804693 DOI: 10.1016/j.ejmp.2022.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 02/18/2023] Open
Abstract
PURPOSE This work has the purpose of validating the Monte Carlo toolkit TOol for PArticle Simulation (TOPAS) for low-dose-rate (LDR) brachytherapy uses. METHODS AND MATERIALS Simulations of 12 LDR sources and 2 COMS eye plaques (10 mm and 20 mm in diameter) and comparisons with published reference data from the Carleton Laboratory for Radiotherapy Physics (CLRP), the TG-43 consensus data and the TG-129 consensus data were performed. Sources from the IROC Houston Source Registry were modeled. The OncoSeed 6711 and the SelectSeed 130.002 were also modeled for historical reasons. For each source, the dose rate constant, the radial dose function and the anisotropy functions at 0.5, 1 and 5 cm were extracted. For the eye plaques (loaded with 125I sources), dose distribution maps, dose profiles along the central axis and transverse axis were calculated. RESULTS Dose rate constants for 11 of the 12 sources are within 4% of the consensus data and within 2% of the CLRP data. The radial dose functions and anisotropy functions are mostly within 2% of the CLRP data. In average, 92% of all voxels are within 1% of the CLRP data for the eye plaques dose distributions. The dose profiles are within 0.5% (central axis) and 1% (transverse axis) of the reference data. CONCLUSION The TOPAS MC toolkit was validated for LDR brachytherapy applications. Single-seed and multi-seed results agree with the published reference data. TOPAS has several benefits such as a simplified approach to MC simulations and an accessible brachytherapy package including comprehensive learning resources.
Collapse
Affiliation(s)
- Audran Poher
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec Québec G1V 0A6, Canada.
| | - Francisco Berumen
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec Québec G1V 0A6, Canada
| | - Yunzhi Ma
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec Québec G1V 0A6, Canada
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States of America
| | - Luc Beaulieu
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec Québec G1V 0A6, Canada
| |
Collapse
|
47
|
Richardson SL, Buzurovic IM, Cohen GN, Culberson WS, Dempsey C, Libby B, Melhus CS, Miller RA, Scanderbeg DJ, Simiele SJ. AAPM medical physics practice guideline 13.a: HDR brachytherapy, part A. J Appl Clin Med Phys 2023; 24:e13829. [PMID: 36808798 PMCID: PMC10018677 DOI: 10.1002/acm2.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 02/22/2023] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines (MPPGs) will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee April 28, 2022.
Collapse
Affiliation(s)
| | - Ivan M Buzurovic
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gil'ad N Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Claire Dempsey
- Calvary Mater Newcastle Hospital University of Newcastle, Callaghan, Australia University of Washington, Seattle, USA
| | | | | | - Robin A Miller
- Multicare Regional Cancer Center, Northwest Medical Physics Center, Tacoma, WA, USA
| | | | | |
Collapse
|
48
|
Ab Shukor NS, Abdullah R, Abdul Aziz MZ, Samson DO, Musarudin M. Dose perturbation effects by metal hip prosthesis in gynaecological 192Ir HDR brachytherapy. Appl Radiat Isot 2023; 196:110751. [PMID: 36871495 DOI: 10.1016/j.apradiso.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The present study was conducted to elucidate the effects of hip prostheses in 192Ir HDR brachytherapy and determine dose uncertainties introduced by the treatment planning. A gynaecological phantom irradiated using Nucletron 192Ir microSelectron HDR source was modeled using MCNP5 code. Three hip materials considered in this study were water, bone, and metal prosthesis. According to the obtained results, a dose perturbation was observed within the medium with a higher atomic number, which reduced the dose to the nearby region.
Collapse
Affiliation(s)
- N S Ab Shukor
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - R Abdullah
- Nuclear Medicine, Oncology and Radiotherapy Department, Hospital USM, 16150, Kubang Kerian, Kelantan, Malaysia
| | - M Z Abdul Aziz
- Advance Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - D O Samson
- Department of Physics, Faculty of Science, University of Abuja, 900211, Abuja, Nigeria
| | - M Musarudin
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
49
|
Nasir Z, Probst L, Schneider F, Clausen S, Bürgy D, Glatting G, Nwankwo O. Organ absorbed doses in the IORT treatment of breast cancer with the INTRABEAM device: a Monte-Carlo study. Biomed Phys Eng Express 2023; 9. [PMID: 36745910 DOI: 10.1088/2057-1976/acb941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Purpose: The current prescription and the assessment of the delivered absorbed dose in intraoperative radiation therapy (IORT) with the INTRABEAM system rely mainly on depth-dose measurements in water. The accuracy of this approach is limited because tissue heterogeneity is ignored. It is also difficult to accurately determine the dose delivered to the patient experimentally as the steep dose gradient is highly sensitive to geometric errors. Our goal is to determine the dose to the target volume and the organs at risk of a clinical breast cancer patient from treatment with the system.Methods: A homogeneous water-equivalent CT dataset was derived from the preoperative CT scan of a patient by setting all materials in the patient volume as water-equivalent. This homogeneous CT data represents the current assumption of a homogenous patient, while the original CT data is considered the ground truth. An in-house Monte Carlo algorithm was used to simulate the delivered dose in both setups for a prescribed treatment dose of 20 Gy to the surface of the 3.5 cm diameter spherical applicator.Results: The doses received by 2% (D2%) of the target volume for the homogeneous and heterogeneous geometries are 16.26 Gy and 9.33 Gy, respectively. The D2% for the heart are 0.035 Gy and 0.119 Gy for the homogeneous and heterogeneous geometries, respectively. This trend is also observed for the other organs at risk.Conclusions: The assumption of a homogeneous patient overestimates the dose to the target volume and underestimates the doses to the organs at risk.
Collapse
Affiliation(s)
- Zulfa Nasir
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University. Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Department of Physics, Faculty of Mathematics and Natural Sciences, Riau University, Bina Widya Campus, Pekanbaru, 28293, Riau, Indonesia
| | - Luis Probst
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University. Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank Schneider
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University. Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University. Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Bürgy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University. Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Obioma Nwankwo
- Strahlentherapie Rhein/Pfalz, Praxis für Strahlentherapie Neustadt, Stiftstraße 15, 67434 Neustadt, Germany
| |
Collapse
|
50
|
Beaulieu L, Rivard MJ. Brachytherapy evolution as seen today. Med Phys 2023. [PMID: 36773303 DOI: 10.1002/mp.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
While brachytherapy is the oldest form of radiation therapy, it is also a very exciting field from both physics and clinical perspectives. From the physics standpoint, brachytherapy dosimetry is largely being governed by the inverse-square law, leading to an unparalleled dose deposition kernel (dose emitted by a seed or single dwell position), even compared to proton or heavy-ion beamlets. There is slightly more dose beyond the central deposition point, but comparatively very little prior to it, that is, little or no entrance dose! It is easy to sum multiple dwell positions that cover a tumor, and the intensity can be modulated quite effectively using dwell times. From a clinical perspective, what sets brachytherapy apart from other intraoperative modalities (e.g., laser, radiofrequency, cryogenic) is our ability to precisely calculate the energy deposited across the relevant patient geometry, anticipate the effect from known dose-outcome relationships, and deliver that energy with exquisite control and selectively to the target volume while sparing organs at risks. This targeting ability has improved substantially over the last two decades. It is built upon key foundational elements, many of which stem from the research and development within our medical physics community. This article provides an overview of these elements that combine to make brachytherapy a successful and developing radiotherapy modality.
Collapse
Affiliation(s)
- Luc Beaulieu
- Centre Intrégé de Cancérologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec, Canada.,Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
| | - Mark J Rivard
- Department of Radiation Oncology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|