1
|
Radonic S, Besserer J, Rohrer Bley C, Schneider U, Meier VS. A concept for anisotropic PTV margins including rotational setup uncertainties and its impact on the tumor control probability in canine brain tumors. Biomed Phys Eng Express 2022; 8. [PMID: 35981496 DOI: 10.1088/2057-1976/ac8a9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this modelling study, we pursued two main goals. The first was to establish a new CTV-to-PTV expansion which considers the closest and most critical organ at risk (OAR). The second goal was to investigate the impact of the planning target volume (PTV) margin size on the tumor control probability (TCP) and its dependence on the geometrical setup uncertainties. The aim was to achieve a smaller margin expansion close to the OAR while allowing a moderately larger expansion in less critical areas further away from the OAR and whilst maintaining the TCP. APPROACH Imaging data of radiation therapy plans from pet dogs which had undergone radiation therapy for brain tumor were used to estimate the clinic specific rotational setup uncertainties. A Monte-Carlo methodology using a voxel-based TCP model was used to quantify the implications of rotational setup uncertainties on the TCP. A combination of algorithms was utilized to establish a computational CTV-to-PTV expansion method based on probability density. This was achieved by choosing a center of rotation close to an OAR. All required software modules were developed and integrated into a software package that directly interacts with the Varian Eclipse treatment planning system. MAIN RESULTS Several uniform and non-isotropic PTVs were created. To ensure comparability and consistency, standardized RT plans with equal optimization constraints were defined, automatically applied and calculated on these targets. The resulting TCPs were then computed, evaluated and compared. SIGNIFICANCE The non-isotropic margins were found to result in larger TCPs with smaller margin excess volume. Further, we presented an additional application of the newly established CTV-to-PTV expansion method for radiation therapy of the spinal axis of human patients.
Collapse
Affiliation(s)
- Stephan Radonic
- Department of Physics, University of Zurich Faculty of Science, Winterthurerstrasse 190, Zurich, ZH, 8057, SWITZERLAND
| | - Jürgen Besserer
- Radiotherapy Hirslanden, Hirslanden Klinik Hirslanden, Witelikerstrasse 40, Zurich, Zürich, 8032, SWITZERLAND
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, University of Zurich Vetsuisse Faculty, Winterthurerstrasse 260, Zurich, Zürich, 8057, SWITZERLAND
| | - Uwe Schneider
- Radiotherapy Hirslanden, Hirslanden Klinik Hirslanden, Witellikerstrasse 40, Zurich, Zürich, 8032, SWITZERLAND
| | - Valeria Sabina Meier
- Division of Radiation Oncology, Small Animal Department, University of Zurich Vetsuisse Faculty, Winterthrerstrasse 260, Zurich, Zürich, 8057, SWITZERLAND
| |
Collapse
|
2
|
Her EJ, Ebert MA, Kennedy A, Reynolds HM, Sun Y, Williams S, Haworth A. Standard versus hypofractionated intensity-modulated radiotherapy for prostate cancer: assessing the impact on dose modulation and normal tissue effects when using patient-specific cancer biology. Phys Med Biol 2021; 66:045007. [PMID: 32408293 DOI: 10.1088/1361-6560/ab9354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypofractionation of prostate cancer radiotherapy achieves tumour control at lower total radiation doses, however, increased rectal and bladder toxicities have been observed. To realise the radiobiological advantage of hypofractionation whilst minimising harm, the potential reduction in dose to organs at risk was investigated for biofocused radiotherapy. Patient-specific tumour location and cell density information were derived from multiparametric imaging. Uniform-dose plans and biologically-optimised plans were generated for a standard schedule (78 Gy/39 fractions) and hypofractionated schedules (60 Gy/20 fractions and 36.25 Gy/5 fractions). Results showed that biologically-optimised plans yielded statistically lower doses to the rectum and bladder compared to isoeffective uniform-dose plans for all fractionation schedules. A reduction in the number of fractions increased the target dose modulation required to achieve equal tumour control. On average, biologically-optimised, moderately-hypofractionated plans demonstrated 15.3% (p-value: <0.01) and 23.8% (p-value: 0.02) reduction in rectal and bladder dose compared with standard fractionation. The tissue-sparing effect was more pronounced in extreme hypofractionation with mean reduction in rectal and bladder dose of 43.3% (p-value: < 0.01) and 41.8% (p-value: 0.02), respectively. This study suggests that the ability to utilise patient-specific tumour biology information will provide greater incentive to employ hypofractionation in the treatment of localised prostate cancer with radiotherapy. However, to exploit the radiobiological advantages given by hypofractionation, greater attention to geometric accuracy is required due to increased sensitivity to treatment uncertainties.
Collapse
Affiliation(s)
- E J Her
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Basaula D, Quinn A, Walker A, Batumalai V, Kumar S, Delaney GP, Holloway L. Risks and benefits of reducing target volume margins in breast tangent radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:305-315. [PMID: 28243923 DOI: 10.1007/s13246-017-0529-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
This study investigates the potential benefits of planning target volume (PTV) margin reduction for whole breast radiotherapy in relation to dose received by organs at risk (OARs), as well as reductions in radiation-induced secondary cancer risk. Such benefits were compared to the increased radiation-induced secondary cancer risk attributed from increased ionizing radiation imaging doses. Ten retrospective patients' computed tomography datasets were considered. Three computerized treatment plans with varied PTV margins (0, 5 and 10 mm) were created for each patient complying with the Radiation Therapy Oncology Group (RTOG) 1005 protocol requirements. The BEIR VII lifetime attributable risk (LAR) model was used to estimate secondary cancer risk to OARs. The LAR was assessed for all treatment plans considering (a) doses from PTV margin variation and (b) doses from two (daily and weekly) kilovoltage cone beam computed tomography (kV CBCT) imaging protocols during the course of treatment. We found PTV margins from largest to smallest resulted in a mean OAR relative dose reduction of 31% (heart), 28% (lung) and 23% (contralateral breast) and the risk of radiation-induced secondary cancer by a relative 23% (contralateral breast) and 22% (contralateral lung). Daily image-guidance using kV CBCT increased the risk of radiation induced secondary cancer to the contralateral breast and contralateral lung by a relative 1.6-1.9% and 1.9-2.5% respectively. Despite the additional dose from kV CBCT for the two considered imaging protocols, smaller PTV margins would still result in an overall reduction in secondary cancer risk.
Collapse
Affiliation(s)
- Deepak Basaula
- Department of Medical Physics and Radiation Engineering, The Canberra Hospital, Garran, Australia. .,Ingham Institute of Applied Medical Research, Sydney, Australia.
| | - Alexandra Quinn
- Northern Sydney Cancer Therapy Centre, Royal North Shore Hospital, Sydney, Australia
| | - Amy Walker
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Vikneswary Batumalai
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Shivani Kumar
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Geoff P Delaney
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Lois Holloway
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia.,University of New South Wales, Sydney, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.,Institute of Medical Physics, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Cuijpers JP, Dahele M, Jonker M, Kraan B, Senan S, Slotman B, Verbakel WF. Analysis of components of variance determining probability of setup errors in CBCT-guided stereotactic radiotherapy of lung tumors. Med Phys 2017; 44:382-388. [PMID: 28032895 DOI: 10.1002/mp.12074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Online tumor matching for SABR lung setup requires margins for inaccuracies due to intra-fraction variability of breathing-averaged tumor position (BATP) and CBCT image guidance. We studied intra-fraction variability during SABR delivery using VMAT, corrected these for measurement inaccuracies, and quantified the CBCT image-guidance uncertainties. MATERIALS AND METHODS For 193 fractions in 38 patients positioned without immobilization devices, CBCT scans were acquired before and after 2 arcs of a RapidArc treatment. A hidden marker test was performed to determine the accuracy of the CBCT system and an inter-observer test was performed to measure registration accuracy. Intra-fraction variability was calculated after correction for these components of variance, and the prediction interval for setup inaccuracies was determined. RESULTS Correction for measurement inaccuracies reduced the intra-fraction variability of the BATP from 1.9 to 1.6 mm in AP, from 1.7 to 1.4 mm in SI and from 1.5 to 1.1 mm in LR direction (1 SD). Intra-fraction variability in bony anatomy after correction was ≤ 1 mm (1 SD). The 95% prediction interval to account for CBCT image-guidance uncertainties and intra-fraction variability was determined, and was found to be within our institutional PTV margins of 5 mm. CONCLUSIONS Our findings show that it is essential to account for measurement and system inaccuracies when obtaining data for validating PTV margins from online CBCT image guidance.
Collapse
Affiliation(s)
- Johan P Cuijpers
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Max Dahele
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Marianne Jonker
- Department of Epidemiology and Biostatistics, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Bianca Kraan
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Suresh Senan
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Ben Slotman
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| | - Wilko Far Verbakel
- Department of Radiation Oncology, VU University medical center, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
5
|
Impact of microscopic disease extension, extra-CTV tumour islets, incidental dose and dose conformity on tumour control probability. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:493-500. [PMID: 27168065 DOI: 10.1007/s13246-016-0446-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The impact of microscopic disease extension (MDE), extra-CTV tumour islets (TIs), incidental dose and dose conformity on tumour control probability (TCP) is analyzed using insilico simulations in this study. MDE in the region in between GTV and CTV is simulated inclusive of geometric uncertainties (GE) using spherical targets and spherical dose distribution. To study the effect of incidental dose on TIs and the effect of dose-response curve (DRC) on tumour control, islets were randomly distributed and TCP was calculated for various dose levels by rescaling the dose. Further, the impact of dose conformity on required PTV margins is also studied. The required PTV margins are ~2 mm lesser than assuming a uniform clonogen density if an exponential clonogen density fall off in the GTV-CTV is assumed. However, margins are almost equal if GE is higher in both cases. This shows that GE has a profound impact on margins. The effect of TIs showed a bi-phasic relation with increasing dose, indicating that patients with islets not in the beam paths do not benefit from dose escalation. Increasing dose conformity is also found to have considerable effect on TCP loss especially for larger GE. Further, smaller margins in IGRT should be used with caution where uncertainty in CTV definition is of concern.
Collapse
|
6
|
McMahon SJ, McGarry CK, Butterworth KT, Jain S, O’Sullivan JM, Hounsell AR, Prise KM. Cellular signalling effects in high precision radiotherapy. Phys Med Biol 2015; 60:4551-64. [DOI: 10.1088/0031-9155/60/11/4551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol) 2015; 27:260-9. [PMID: 25797579 DOI: 10.1016/j.clon.2015.02.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 12/25/2022]
Abstract
If the α/β ratio is high (e.g. 10 Gy) for tumour clonogen killing, but low (e.g. 3 Gy) for late normal tissue complications, then delivering external beam radiotherapy in a large number (20-30) of small (≈2 Gy) dose fractions should yield the highest 'therapeutic ratio'; this is demonstrated via the linear-quadratic model of cell killing. However, this 'conventional wisdom' is increasingly being challenged, partly by the success of stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy (SABR) extreme hypofractionation regimens of three to five large fractions for early stage non-small cell lung cancer and partly by indications that for certain tumours (prostate, breast) the α/β ratio may be of the same order or even lower than that characterising late complications. It is shown how highly conformal dose delivery combined with quasi-parallel normal tissue behaviour (n close to 1) enables 'safe' hypofractionation; this can be predicted by the (α/β)eff concept for normal tissues. Recent analyses of the clinical outcomes of non-small cell lung cancer radiotherapy covering 'conventional' hyper- to extreme hypofractionation (stereotactic ablative radiotherapy) regimens are consistent with linear-quadratic radiobiology, even at the largest fraction sizes, despite there being theoretical reasons to expect 'LQ violation' above a certain dose. Impairment of re-oxygenation between fractions and the very high (α/β) for hypoxic cells can complicate the picture regarding the analysis of clinical outcomes; it has also been suggested that vascular damage may play a role for very large dose fractions. Finally, the link between high values of (α/β)eff and normal-tissue sparing for quasi-parallel normal tissues, thereby favouring hypofractionation, may be particularly important for proton therapy, but more generally, improved conformality, achieved by whatever technique, can be translated into individualisation of both prescription dose and fraction number via the 'isotoxic' (iso-normal tissue complication probability) concept.
Collapse
|
8
|
Srivastava SP, Cheng CW, Das IJ. Image Guidance-Based Target Volume Margin Expansion in IMRT of Head and Neck Cancer. Technol Cancer Res Treat 2014; 15:107-13. [PMID: 25432930 DOI: 10.1177/1533034614561162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/25/2014] [Indexed: 11/15/2022] Open
Abstract
This study quantifies the setup uncertainties to optimize the planning target volume (PTV) margin based on daily image guidance, its dosimetric impact, and radiobiological implication for intensity-modulated radiation therapy (IMRT) in head and neck cancer. Ten patients were retrospectively chosen who had been treated with IMRT and with daily image-guided radiation therapy (IGRT). The daily setup errors of the 10 patients from on-board imaging for the entire treatment were analyzed. Planning target volumes were generated by expanding the clinical target volumes (CTVs) with 0 to 10 mm margins. The IMRT plans with the same dose-volume constraints were created in an Eclipse treatment planning system. The effect of volume expansion was analyzed with biological indices such as tumor control probability, normal tissue complication probability (NTCP), and equivalent uniform dose. Analysis of 906 daily setup corrections using daily IGRT showed that 98% of the daily setups are within ± 5 mm. The relative increase in PTV-CTV volume from 0 to 10 mm margins provides nearly 4-fold volume increase and is linearly related to monitor unit (MU). The increase in MU is about 5%/mm margin increase. The relative increase in NTCP of parotids from 5 to 10 mm margins is 3.2 ± 1.15. Increase in PTV margin increases extra tissue volume with a corresponding increase in MU for treatment and NTCP values. Even a small margin increase (eg, 1 mm) may result in increase of more than 20% in relative extra volume and 15% in NTCP value of organs at risk (OARs). With image guidance, the setup uncertainty could be achieved within ± 5 mm for 98% of the treatments, and a margin <5 mm for PTV may seem desirable to reduce the extra tissue irradiated, but at the expense of a more demanding setup accuracy.
Collapse
Affiliation(s)
- Shiv P Srivastava
- Department of Health Sciences, Purdue University, West Lafayette, IN, USA Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chee-Wai Cheng
- Department of Health Sciences, Purdue University, West Lafayette, IN, USA Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Indra J Das
- Department of Health Sciences, Purdue University, West Lafayette, IN, USA Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|