1
|
Feng W, Rivard MJ, Carey EM, Hearn RA, Pai S, Nath R, Kim Y, Thomason CL, Boyce DE, Zhang H. Recommendations for intraoperative mesh brachytherapy: Report of AAPM Task Group No. 222. Med Phys 2021; 48:e969-e990. [PMID: 34431524 DOI: 10.1002/mp.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Mesh brachytherapy is a special type of a permanent brachytherapy implant: it uses low-energy radioactive seeds in an absorbable mesh that is sutured onto the tumor bed immediately after a surgical resection. This treatment offers low additional risk to the patient as the implant procedure is carried out as part of the tumor resection surgery. Mesh brachytherapy utilizes identification of the tumor bed through direct visual evaluation during surgery or medical imaging following surgery through radiographic imaging of radio-opaque markers within the sources located on the tumor bed. Thus, mesh brachytherapy is customizable for individual patients. Mesh brachytherapy is an intraoperative procedure involving mesh implantation and potentially real-time treatment planning while the patient is under general anesthesia. The procedure is multidisciplinary and requires the complex coordination of multiple medical specialties. The preimplant dosimetry calculation can be performed days beforehand or expediently in the operating room with the use of lookup tables. In this report, the guidelines of American Association of Physicists in Medicine (AAPM) are presented on the physics aspects of mesh brachytherapy. It describes the selection of radioactive sources, design and preparation of the mesh, preimplant treatment planning using a Task Group (TG) 43-based lookup table, and postimplant dosimetric evaluation using the TG-43 formalism or advanced algorithms. It introduces quality metrics for the mesh implant and presents an example of a risk analysis based on the AAPM TG-100 report. Recommendations include that the preimplant treatment plan be based upon the TG-43 dose calculation formalism with the point source approximation, and the postimplant dosimetric evaluation be performed by using either the TG-43 approach, or preferably the newer model-based algorithms (viz., TG-186 report) if available to account for effects of material heterogeneities. To comply with the written directive and regulations governing the medical use of radionuclides, this report recommends that the prescription and written directive be based upon the implanted source strength, not target-volume dose coverage. The dose delivered by mesh implants can vary and depends upon multiple factors, such as postsurgery recovery and distortions in the implant shape over time. For the sake of consistency necessary for outcome analysis, prescriptions based on the lookup table (with selection of the intended dose, depth, and treatment area) are recommended, but the use of more advanced techniques that can account for real situations, such as material heterogeneities, implant geometric perturbations, and changes in source orientations, is encouraged in the dosimetric evaluation. The clinical workflow, logistics, and precautions are also presented.
Collapse
Affiliation(s)
- Wenzheng Feng
- Department of Radiation Oncology, Saint Barnabas Medical Center, Livingston, New Jersey, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Robert A Hearn
- Department of Radiation Physics at Theragenics, Theragenics Corp., Buford, Georgia, USA
| | - Sujatha Pai
- Department of Radiation Oncology, Memorial Hermann Texas Medical Center, Houston, Texas, USA
| | - Ravinder Nath
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yongbok Kim
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona, USA
| | - Cynthia L Thomason
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
2
|
Mao MH, Fan Y, Qiu R, Ren L, Hu A, Li JL, Han ZX. A Newly Designed Seed-Loading Device for Verifying the Safety of 125I Implants to the Canine Carotid Artery. Radiat Res 2021; 196:175-182. [PMID: 33979443 DOI: 10.1667/rade-21-00020.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 11/03/2022]
Abstract
A seed-loading device was designed and modeled using the Monte Carlo method to verify the biological effect of iodine-125 (125I) particles on blood vessels through animal experiments. The dose distribution characteristics of irradiated vessels were established by adjusting the design variables and geometry. The deviation between the actual value and the theoretical value was verified in vitro by the thermoluminescence dosimetry (TLD) method. After verification, the device was used to examine the biological effect of 125I irradiation of canine carotid arteries in two dogs (and one control dog) for 180 days. The hollow cylinder seed-loading device was constructed with an inner diameter of 0.5 cm and a length of 3.3 cm. When six seeds were loaded into a single layer, the source strength ratio of the intermediate layer to the edge layer was 0.7:1. When six layers of seeds were arranged at 0.45-cm intervals, the deviations between the maximum, minimum and mean energy fluence within 2.25 cm of the vessel wall were 2.19% and -4.12%, respectively, and -9% and 4%, respectively, when verified in vitro using TLD. The carotid arteries showed good tolerance to 0.56 kGy (range of 0.51-0.58 kGy) after 180 days of irradiation. In conclusion, this 125I seed-loading device overcomes the random distribution of seeds and lays an accurate radiophysical foundation for subsequent biological experiments. The preliminary results showed that the carotid artery has good tolerance to 0.56 kGy irradiation.
Collapse
Affiliation(s)
- Ming-Hui Mao
- Department of Oral and Maxillary Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, P.R. China
| | - Yi Fan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, P.R. China.,Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, P.R. China
| | - Li Ren
- Nuctech Company Limited, Beijing, 100084, P.R. China
| | - Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, P.R. China.,Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, P.R. China
| | - Jun-Li Li
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, P.R. China.,Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, P.R. China
| | - Zheng-Xue Han
- Department of Oral and Maxillary Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, P.R. China
| |
Collapse
|
3
|
Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, Gjesteby L, Paganetti H. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol 2017; 62:R49-R80. [DOI: 10.1088/1361-6560/aa5293] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Côté N, Bedwani S, Carrier JF. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation. Med Phys 2016; 43:2611. [DOI: 10.1118/1.4947486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Miksys N, Cygler JE, Caudrelier JM, Thomson RM. Patient-specific Monte Carlo dose calculations for (103)Pd breast brachytherapy. Phys Med Biol 2016; 61:2705-29. [PMID: 26976478 DOI: 10.1088/0031-9155/61/7/2705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for (103)Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV [Formula: see text] and skin [Formula: see text] each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV [Formula: see text] and skin [Formula: see text] are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV [Formula: see text] of up to 11% and skin [Formula: see text] of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ([Formula: see text] on average 10% and up to 27%) and underestimates dose to the skin ([Formula: see text] on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied herein. The considerable differences between TG-43 and MC models underline the importance of patient-specific MC dose calculations for permanent implant breast brachytherapy. Further, the sensitivity of these MC dose calculations due to necessary assumptions illustrates the importance of developing a consensus modelling approach.
Collapse
Affiliation(s)
- N Miksys
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
6
|
Stewart A, Parashar B, Patel M, O'Farrell D, Biagioli M, Devlin P, Mutyala S. American Brachytherapy Society consensus guidelines for thoracic brachytherapy for lung cancer. Brachytherapy 2015; 15:1-11. [PMID: 26561277 DOI: 10.1016/j.brachy.2015.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To update brachytherapy recommendations for pretreatment evaluation, treatment, and dosimetric issues for thoracic brachytherapy for lung cancer. METHODS AND MATERIALS Members of the American Brachytherapy Society with expertise in thoracic brachytherapy updated recommendations for thoracic brachytherapy based on literature review and clinical experience. RESULTS The American Brachytherapy Society consensus guidelines recommend the use of endobronchial brachytherapy for disease palliation in patients with central obstructing lesions, particularly in patients who have previously received external beam radiotherapy. The use of interstitial implants after incomplete resection may improve outcomes and provide enhanced palliation. Early reports support the use of CT-guided intratumoral volume implants within clinical studies. The use of brachytherapy routinely after sublobar resection is not generally recommended, unless within the confines of a clinical trial or a registry. CONCLUSIONS American Brachytherapy Society recommendations for thoracic brachytherapy are provided. Practitioners are encouraged to follow these guidelines and to develop further clinical trials to examine this treatment modality to increase the evidence base for its use.
Collapse
Affiliation(s)
- A Stewart
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; University of Surrey, Guildford, UK.
| | - B Parashar
- Department of Stich Radiation Oncology, Weill Cornell Medical College, New York, NY
| | - M Patel
- Department of Radiation Oncology, Baylor Scott and White Health, Temple, TX
| | - D O'Farrell
- Dana Faber Cancer Centre, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - M Biagioli
- Florida Hospital Cancer Institute, Department of Radiation Oncology, H.Lee Moffitt Cancer Center, Tampa, FL
| | - P Devlin
- Dana Faber Cancer Centre, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - S Mutyala
- Department of Radiation Medicine, St. Joseph's Hospital and Medical Center, University of Arizona Cancer Center at Dignity Health, Phoenix, AZ
| |
Collapse
|
7
|
Spectral CT with monochromatic imaging and metal artifacts reduction software for artifacts reduction of ¹²⁵I radioactive seeds in liver brachytherapy. Jpn J Radiol 2015; 33:694-705. [PMID: 26456321 DOI: 10.1007/s11604-015-0482-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the optimal monochromatic energy for artifacts reduction from (125)I seeds as well as image improvement in the vicinity of seeds on monochromatic images with and without metal artifacts reduction software (MARS) and to compare this with traditional 120-kVp images, so as to evaluate the application value of gemstone spectral imaging for reducing artifacts from (125)I seeds in liver brachytherapy. MATERIALS AND METHODS A total of 45 tumors from 25 patients treated with (125)I seed brachytherapy in the liver were enrolled in this study. Multiphasic spectral computed tomography (CT) scanning was performed for each patient. After a delay time of 15 s of portal vein phase, a traditional 120-kVp scan was performed, focusing on several planes of (125)I seeds only. The artifact index (AI) in the vicinity of seeds and the standard deviation (SD) of the CT density of region of interest in the outside liver parenchyma were calculated. Artifact appearance was evaluated and classified on reconstructed monochromatic S and 120-kVp images. Image quality in the vicinity of seeds of three data sets were evaluated using a 1-5 scale scoring method. The Friedman rank-sum test was used to estimate the scoring results of image quality. RESULTS The greatest noise in monochromatic images was found at 40 keV (SD = 27.38, AI = 206.40). The optimal monochromatic energy was found at 75 keV, which provided almost the least image noise (SD = 10.01) and good performance in artifact reduction (AI = 102.73). Image noise and AI reduction at 75 keV was decreased by 63.44 and 50.23%, compared with at 40 keV. Near-field thick artifacts were obvious in all 45 lesions, in 120-kVp images, and 75-keV images, but basically reduced in 75 keV MARS images and artifacts completely invisible in 7 lesions. The number of diagnosable images (score ≥3) was significantly more in the 75-keV MARS group (28/45), and the 75-keV group (22/45) than in the 120-kVp group (11/45) (p < 0.0167 for both). Compared with 120-kVp images alone, 75-keV images plus 75-keV MARS images can increase tumor visibility around seeds and increase the proportion of diagnostic images to 84.4% (38/45). CONCLUSION Spectral CT producing 75-keV MARS images could substantially reduce near-field thick artifacts caused by (125)I seeds and improve image quality, even to a state of being completely free from artifacts. Spectral CT imaging (with and without MARS) can provide more accurate CT images for estimating efficacy after (125)I seed brachytherapy in the liver.
Collapse
|
8
|
Miksys N, Xu C, Beaulieu L, Thomson RM. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment. Phys Med Biol 2015. [PMID: 26216174 DOI: 10.1088/0031-9155/60/15/6039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose calculation studies for various permanent implant brachytherapy treatments.
Collapse
Affiliation(s)
- N Miksys
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, ON
| | | | | | | |
Collapse
|