1
|
Efficient full Monte Carlo modelling and multi-energy generative model development of an advanced X-ray device. Z Med Phys 2022:S0939-3889(22)00061-7. [DOI: 10.1016/j.zemedi.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
|
2
|
Poirier Y, Johnstone CD, Anvari A, Brodin NP, Santos MD, Bazalova-Carter M, Sawant A. A failure modes and effects analysis quality management framework for image-guided small animal irradiators: A change in paradigm for radiation biology. Med Phys 2020; 47:2013-2022. [PMID: 31986221 DOI: 10.1002/mp.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Image-guided small animal irradiators (IGSAI) are increasingly being adopted in radiation biology research. These animal irradiators, designed to deliver radiation with submillimeter accuracy, exhibit complexity similar to that of clinical radiation delivery systems, including image guidance, robotic stage motion, and treatment planning systems. However, physics expertise and resources are scarcer in radiation biology, which makes implementation of conventional prescriptive QA infeasible. In this study, we apply the failure modes and effect analysis (FMEA) popularized by the AAPM task group 100 (TG-100) report to IGSAI and radiation biological research. METHODS Radiation biological research requires a change in paradigm where small errors to large populations of animals are more severe than grievous errors that only affect individuals. To this end, we created a new adverse effects severity table adapted to radiation biology research based on the original AAPM TG-100 severity table. We also produced a process tree which outlines the main components of radiation biology studies performed on an IGSAI, adapted from the original clinical IMRT process tree from TG-100. Using this process tree, we created and distributed a preliminary survey to eight expert IGSAI operators in four institutions. Operators rated proposed failure modes for occurrence, severity, and lack of detectability, and were invited to share their own experienced failure modes. Risk probability numbers (RPN) were calculated and used to identify the failure modes which most urgently require intervention. RESULTS Surveyed operators indicated a number of high (RPN >125) failure modes specific to small animal irradiators. Errors due to equipment breakdown, such as loss of anesthesia or thermal control, received relatively low RPN (12-48) while errors related to the delivery of radiation dose received relatively high RPN (72-360). Errors identified could either be improved by manufacturer intervention (e.g., electronic interlocks for filter/collimator) or physics oversight (errors related to tube calibration or treatment planning system commissioning). Operators identified a number of failure modes including collision between the collimator and the stage, misalignment between imaging and treatment isocenter, inaccurate robotic stage homing/translation, and incorrect SSD applied to hand calculations. These were all relatively highly rated (90-192), indicating a possible bias in operators towards reporting high RPN failure modes. CONCLUSIONS The first FMEA specific to radiation biology research was applied to image-guided small animal irradiators following the TG-100 methodology. A new adverse effects severity table and a process tree recognizing the need for a new paradigm were produced, which will be of great use to future investigators wishing to pursue FMEA in radiation biology research. Future work will focus on expanding scope of user surveys to users of all commercial IGSAI and collaborating with manufacturers to increase the breadth of surveyed expert operators.
Collapse
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Daniel Johnstone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Morgane Dos Santos
- Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Poirier Y, Johnstone CD, Kirkby C. The potential impact of ultrathin filter design on dosimetry and relative biological effectiveness in modern image-guided small animal irradiators. Br J Radiol 2018; 92:20180537. [PMID: 30281330 DOI: 10.1259/bjr.20180537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: Modern image-guided small animal irradiators like the Xstrahl Small Animal Radiation Research Platform (SARRP) are designed with ultrathin 0.15 mm Cu filters, which compared with more heavily filtrated traditional cabinet-style biological irradiators, produce X-ray spectra weighted toward lower energies, impacting the dosimetric properties and the relative biological effectiveness (RBE). This study quantifies the effect of ultrathin filter design on relative depth dose profiles, absolute dose output, and RBE using Monte Carlo techniques. METHODS: The percent depth-dose and absolute dose output are calculated using kVDoseCalc and EGSnrc, respectively, while a tally based on the induction of double-strand breaks as a function of electron spectra invoked in PENELOPE is used to estimate the RBE. RESULTS: The RBE increases by >2.4% in the ultrathin filter design compared to a traditional irradiator. Furthermore, minute variations in filter thickness have notable effects on the dosimetric properties of the X-ray beam, increasing the percent depth dose (at 2 cm in water) by + 0.4%/0.01 mm Cu and decreasing absolute dose (at 2 cm depth in water) by -1.8%/0.01 mm Cu for the SARRP. CONCLUSIONS: These results show that modern image-guided irradiators are quite sensitive to small manufacturing variations in filter thickness, and show a small change in RBE compared to traditional X-ray irradiators. ADVANCES IN KNOWLEDGE: We quantify the consequences of ultrathin filter design in modern image-guided biological irradiators on relative and absolute dose, and RBE. Our results show these to be small, but not insignificant, suggesting laboratories transitioning between irradiators should carefully design their radiobiological experiments.
Collapse
Affiliation(s)
- Yannick Poirier
- 1 Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland School of Medicine , Baltimore, MD , USA.,2 Department of Radiation Oncology, Division of Medical Physics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Christopher Daniel Johnstone
- 1 Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland School of Medicine , Baltimore, MD , USA.,3 Department of Physics and Astronomy, University of Victoria , Victoria, BC , Canada
| | - Charles Kirkby
- 4 Department of Medical Physics, Jack Ady Cancer Center , Lethbridge, AB , Canada.,5 Department of Physics and Astronomy, University of Calgary , Calgary, AB , Canada.,6 Department of Oncology, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
4
|
Martell K, Poirier Y, Zhang T, Hudson A, Spencer D, Jacso F, Hayashi R, Banerjee R, Khan R, Wolfe N, Voroney JP. Radiation therapy for deep periocular cancer treatments when protons are unavailable: is combining electrons and orthovoltage therapy beneficial? JOURNAL OF RADIATION RESEARCH 2018; 59:593-603. [PMID: 30053071 PMCID: PMC6151628 DOI: 10.1093/jrr/rry045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Deep periocular cancers can be difficult to plan and treat with radiation, given the difficulties in apposing bolus to skin, and the proximity to the retina and other optic structures. We sought to compare the combination of electrons and orthovoltage therapy (OBE) with existing modalities for these lesions. Four cases-a retro-orbital melanoma (Case 1) and basal cell carcinomas, extending across the eyelid (Case 2) or along the medial canthus (Cases 3-4)-were selected for comparison. In each case, radiotherapy plans for electron only, 70% electron and 30% orthovoltage (OBE), volumetric-modulated arc therapy (VMAT), conformal arc, and protons were compared. Dose-volume histograms for planning target volume coverage and selected organs at risk (OARs) were then calculated. The V90% coverage of the planning target volume was >98% for electrons, VMAT, conformal arc and proton plans and 90.2% and 89.5% in OBE plans for Cases 2 and 3, respectively. The retinal V80% was >98% in electron, VMAT and proton plans and 79.4%; and 87.1% in OBE and conformal arcs for Case 2 and 91.3%, 36.4%, 56.9%, 52.4% and 43.7% for Case 3 in electrons, OBE, VMAT, conformal arc and proton plans, respectively. Protons provided superior coverage, homogeneity and OAR sparing, compared with all other modalities. However, given its simplicity and widespread availability, OBE is a potential alternative treatment option for moderately deep lesions where bolus placement is difficult.
Collapse
Affiliation(s)
- Kevin Martell
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland, 22 S Greene St, Baltimore, MD, USA
| | - Tiezhi Zhang
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave., CB, St. Louis, MO, USA
| | - Alana Hudson
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - David Spencer
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Ferenc Jacso
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Richard Hayashi
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Robyn Banerjee
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Rao Khan
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave., CB, St. Louis, MO, USA
| | - Nathan Wolfe
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Jon-Paul Voroney
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Adamson J, Mein S, Meng B, Gunasingha R, Yoon SW, Miles D, Walder H, Fathi Z, Beyer W, Spector N, Gieger TL, Nolan MW, Oldham M. Utilizing a diagnostic kV imaging system for x-ray psoralen activated cancer therapy (X-PACT). Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Yang K, Li X, George Xu X, Liu B. Direct and fast measurement of CT beam filter profiles with simultaneous geometrical calibration. Med Phys 2017; 44:57-70. [PMID: 28102951 DOI: 10.1002/mp.12024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To accurately measure the beam filter profiles from a variety of CT scanner models and to provide reference data for Monte Carlo simulations of CT scanners. METHODS This study proposed a new method to measure CT beam filter profiles using a linear-array x-ray detector (X-Scan 0.8f3-512; Detection Technology Inc., Espoo, Finland) under gantry rotation mode. A robust geometrical calibration approach was developed to determine key geometrical parameters by considering the x-ray focal spot location relative to the linear-array detector and the gantry's angular increment at each acquisition point. CT beam intensity profiles were synthesized from continuously measured data during a 10° gantry rotation range with calibrated detector response and system geometry information. Relative transmission profiles of nineteen sets of beam filters were then derived for nine different CT scanner models from three different manufacturers. Equivalent aluminum thickness profiles of these beam filters were determined by analytical calculation using the Spektr Matlab software package to match the measured transmission profiles. Three experiments were performed to validate the accuracy of the geometrical calibration, detector response modeling, and the derived equivalent aluminum thickness profiles. RESULTS The beam intensity profiles measured from gantry rotation mode showed very good agreement with those measured with gantry stationary mode, with a maximal difference of 3%. The equivalent aluminum thickness determined by this proposed method agreed well with what was measured by an ion chamber, with a mean difference of 0.4%. The determined HVL profiles matched well with data from a previous study (max difference of 4.7%). CONCLUSIONS An accurate and robust method to directly measure profiles from a broad list of beam filters and CT scanner models was developed, implemented, and validated. Useful reference data was provided for future research on CT system modeling.
Collapse
Affiliation(s)
- Kai Yang
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xinhua Li
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Bob Liu
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
7
|
Källman HE, Holmberg R, Andersson J, Kull L, Tranéus E, Ahnesjö A. Source modeling for Monte Carlo dose calculation of CT examinations with a radiotherapy treatment planning system. Med Phys 2016; 43:6118. [PMID: 27806588 DOI: 10.1118/1.4965043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiation dose to patients undergoing examinations with Multislice Computed Tomography (MSCT) as well as Cone Beam Computed Tomography (CBCT) is a matter of concern. Risk management could benefit from efficient replace rational dose calculation tools. The paper aims to verify MSCT dose calculations using a Treatment Planning System (TPS) for radiotherapy and to evaluate four different variations of bow-tie filter characterizations for the beam model used in the dose calculations. METHODS A TPS (RayStation™, RaySearch Laboratories, Stockholm, Sweden) was configured to calculate dose from a MSCT (GE Healthcare, Wauwatosa, WI, USA). The x-ray beam was characterized in a stationary position the by measurements of the Half-Value Layer (HVL) in aluminum and kerma along the principal axes of the isocenter plane perpendicular to the beam. A Monte Carlo source model for the dose calculation was applied with four different variations on the beam-shaping bow-tie filter, taking into account the different degrees of HVL information but reconstructing the measured kerma distribution after the bow-tie filter by adjusting the photon sampling function. The resulting dose calculations were verified by comparison with measurements in solid water as well as in an anthropomorphic phantom. RESULTS The calculated depth dose in solid water as well as the relative dose profiles was in agreement with the corresponding measured values. Doses calculated in the anthropomorphic phantom in the range 26-55 mGy agreed with the corresponding thermo luminescence dosimeter (TLD) measurements. Deviations between measurements and calculations were of the order of the measurement uncertainties. There was no significant difference between the different variations on the bow-tie filter modeling. CONCLUSIONS Under the assumption that the calculated kerma after the bow-tie filter replicates the measured kerma, the central specification of the HVL of the x-ray beam together with the kerma distribution can be used to characterize the beam. Thus, within the limits of the study, a flat bow-tie filter with an HVL specified by the vendor suffices to calculate the dose distribution. The TPS could be successfully configured to replicate the beam movement and intensity modulation of a spiral scan with dose modulation, on the basis of the specifications available in the metadata of the digital images and the log file of the CT.
Collapse
Affiliation(s)
- Hans-Erik Källman
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, and Center for Clinical Research, County Dalarna, Bild och Funktionsmedicin, Falu lasarett, Falun SE-791 82, Sweden
| | - Rickard Holmberg
- Raysearch Laboratories AB, Box 3297, Stockholm SE-103 65, Sweden
| | - Jonas Andersson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-901 85, Sweden
| | - Love Kull
- Department of Medical Radiation Physics, Sunderby Hospital, Norrbotten County Council, Luleå SE-971 80, Sweden
| | - Erik Tranéus
- Raysearch Laboratories AB, Box 3297, Stockholm SE-103 65, Sweden
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Sjukhusfysik Ing. 82, Akademiska Sjukhuset, Uppsala SE-751 85, Sweden
| |
Collapse
|
8
|
Li X, Shi JQ, Zhang D, Singh S, Padole A, Otrakji A, Kalra MK, Xu XG, Liu B. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations. Med Phys 2016; 42:6274-82. [PMID: 26520720 DOI: 10.1118/1.4932364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. METHODS A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o'clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. RESULTS Absolute attenuation was measured with the body bow-tie scanned at 80-140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. CONCLUSIONS The described method allows fast and accurate bow-tie filter characterization.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jim Q Shi
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Da Zhang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Sarabjeet Singh
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Atul Padole
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Alexi Otrakji
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
9
|
Poirier Y, Tambasco M. Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom. J Appl Clin Med Phys 2016; 17:155-171. [PMID: 27455477 PMCID: PMC5690031 DOI: 10.1120/jacmp.v17i4.6021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 03/15/2016] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
We present an experimental validation of a kilovoltage (kV) X‐ray source characterization model in an anthropomorphic phantom to estimate patient‐specific absorbed dose from kV cone‐beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT‐dose index (CTDIw) dose estimates. We simulated the default Varian on‐board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard‐dose head, low‐dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X‐ray point‐source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in‐house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within ≤2% of local dose, except in regions of high‐dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from 2.4%±6.0% to 5.7%±10.3%, depending on the characterized CBCT imaging protocol. The low‐dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal CTDIw would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X‐ray source could be used to accurately assess patient‐specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further evidence that existing CTDIw assessments underestimate absorbed dose delivered to patients. PACS number(s): 87.57.Q‐, 87.57.uq, 87.10.Rt
Collapse
|
10
|
Martin CJ, Abuhaimed A, Sankaralingam M, Metwaly M, Gentle DJ. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:215-229. [PMID: 26975735 DOI: 10.1088/0952-4746/36/2/215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within ±21% for the stomach and liver in thorax scans and 2 × CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.
Collapse
Affiliation(s)
- Colin J Martin
- Department of Clinical Physics, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
11
|
Randazzo M, Tambasco M. A rapid noninvasive characterization of CT x-ray sources. Med Phys 2016; 42:3960-8. [PMID: 26133596 DOI: 10.1118/1.4921805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. METHODS To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name "HVL Jig" was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). RESULTS At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. CONCLUSIONS The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter direction, which can serve as input for accurate CT dose computations.
Collapse
Affiliation(s)
- Matt Randazzo
- Department of Physics, San Diego State University, San Diego, California 92182-1233
| | - Mauro Tambasco
- Department of Physics, San Diego State University, San Diego, California 92182-1233
| |
Collapse
|
12
|
Sommerville M, Poirier Y, Tambasco M. A measurement-based X-ray source model characterization for CT dosimetry computations. J Appl Clin Med Phys 2015; 16:386-400. [PMID: 26699546 PMCID: PMC5691008 DOI: 10.1120/jacmp.v16i6.5231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 07/31/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to show that the nominal peak tube voltage potential (kVp) and measured half-value layer (HVL) can be used to generate energy spectra and fluence profiles for characterizing a computed tomography (CT) X-ray source, and to validate the source model and an in-house kV X-ray dose computation algorithm (kVDoseCalc) for computing machine- and patient-specific CT dose. Spatial variation of the X-ray source spectra of a Philips Brilliance and a GE Optima Big Bore CT scanner were found by measuring the HVL along the direction of the internal bow-tie filter axes. Third-party software, Spektr, and the nominal kVp settings were used to generate the energy spectra. Beam fluence was calculated by dividing the integral product of the spectra and the in-air NIST mass-energy attenuation coefficients by in-air dose measurements along the filter axis. The authors found the optimal number of photons to seed in kVDoseCalc to achieve dose convergence. The Philips Brilliance beams were modeled for 90, 120, and 140 kVp tube settings. The GE Optima beams were modeled for 80, 100, 120, and 140 kVp tube settings. Relative doses measured using a Capintec Farmer-type ionization chamber (0.65 cc) placed in a cylindrical polymethyl methacrylate (PMMA) phantom and irradiated by the Philips Brilliance, were compared to those computed with kVDoseCalc. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima were measured using a (0.015 cc) PTW Freiburg ionization chamber and compared to computations from kVDoseCalc. The number of photons required to reduce the average statistical uncertainty in dose to < 0.3% was 2 × 105. The average percent difference between calculation and measurement over all 12 PMMA phantom positions was found to be 1.44%, 1.47%, and 1.41% for 90, 120, and 140 kVp, respectively. The maximum percent difference between calculation and measurement for all energies, measurement positions, and phantoms was less than 3.50%. Thirty-five out of a total of 36 simulation conditions were within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose.
Collapse
|
13
|
Johnstone CD, LaFontaine R, Poirier Y, Tambasco M. Modeling a superficial radiotherapy X-ray source for relative dose calculations. J Appl Clin Med Phys 2015; 16:5162. [PMID: 26103479 PMCID: PMC5690109 DOI: 10.1120/jacmp.v16i3.5162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/17/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to empirically characterize and validate a kilovoltage (kV) X‐ray beam source model of a superficial X‐ray unit for relative dose calculations in water and assess the accuracy of the British Journal of Radiology Supplement 25 (BJR 25) percentage depth dose (PDD) data. We measured central axis PDDs and dose profiles using an Xstrahl 150 X‐ray system. We also compared the measured and calculated PDDs to those in the BJR 25. The Xstrahl source was modeled as an effective point source with varying spatial fluence and spectra. In‐air ionization chamber measurements were made along the x‐ and y‐axes of the X‐ray beam to derive the spatial fluence and half‐value layer (HVL) measurements were made to derive the spatially varying spectra. This beam characterization and resulting source model was used as input for our in‐house dose calculation software (kVDoseCalc) to compute radiation dose at points of interest (POIs). The PDDs and dose profiles were measured using 2, 5, and 15 cm cone sizes at 80, 120, 140, and 150 kVp energies in a scanning water phantom using IBA Farmer‐type ionization chambers of volumes 0.65 and 0.13 cc, respectively. The percent difference in the computed PDDs compared with our measurements range from −4.8% to 4.8%, with an overall mean percent difference and standard deviation of 1.5% and 0.7%, respectively. The percent difference between our PDD measurements and those from BJR 25 range from −14.0% to 15.7%, with an overall mean percent difference and standard deviation of 4.9% and 2.1%, respectively — showing that the measurements are in much better agreement with kVDoseCalc than BJR 25. The range in percent difference between kVDoseCalc and measurement for profiles was −5.9% to 5.9%, with an overall mean percent difference and standard deviation of 1.4% and 1.4%, respectively. The results demonstrate that our empirically based X‐ray source modeling approach for superficial X‐ray therapy can be used to accurately compute relative dose in a homogeneous water‐equivalent medium. They also show limitations in the accuracy of the BJR 25 PDD data. PACS number: 87.55.kh
Collapse
|
14
|
Gräfe J, Poirier Y, Jacso F, Khan R, Liu HW, Villarreal-Barajas JE. Assessing the deviation from the inverse square law for orthovoltage beams with closed-ended applicators. J Appl Clin Med Phys 2014; 15:356–366. [PMID: 25207421 PMCID: PMC5875524 DOI: 10.1120/jacmp.v15i4.4893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/24/2014] [Accepted: 04/09/2014] [Indexed: 11/23/2022] Open
Abstract
In this report, we quantify the divergence from the inverse square law (ISL) of the beam output as a function of distance (standoff) from closed-ended applicators for a modern clinical orthovoltage unit. The divergence is clinically significant exceeding 3% at a 1.2 cm distance for 4 × 4 and 10 × 10 cm2 closed-ended applicators. For all investigated cases, the measured dose falloff is more rapid than that predicted by the ISL and, therefore, causes a systematic underdose when using the ISL for dose calculations at extended SSD. The observed divergence from the ISL in closed-ended applicators can be explained by the end-plate scattering contribution not accounted for in the ISL calculation. The standoff measurements were also compared to the predictions from a home-built kV dose computation algorithm, kVDoseCalc. The kVDoseCalc computation predicted a more rapid falloff with distance than observed experimentally. The computation and measurements agree to within 1.1% for standoff distances of 3 cm or less for 4 × 4 cm2 and 10 × 10 cm2 field sizes. The overall agreement is within 2.3% for all field sizes and standoff distances measured. No significant deviation from the ISL was observed for open-ended applicators for standoff distances up to 10 cm.
Collapse
Affiliation(s)
- James Gräfe
- Tom Baker Cancer Centre University of Calgary.
| | | | | | | | | | | |
Collapse
|