1
|
Linder PM, Lan W, Trautwein NF, Brosch-Lenz J, von Beschwitz S, Kupferschläger J, Reischl G, Grözinger G, Dittmann H, la Fougère C, Schmidt FP. Optimization of Y-90 Radioembolization Imaging for Post-Treatment Dosimetry on a Long Axial Field-of-View PET/CT Scanner. Diagnostics (Basel) 2023; 13:3418. [PMID: 37998554 PMCID: PMC10670048 DOI: 10.3390/diagnostics13223418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND PET imaging after yttrium-90 (Y-90) radioembolization is challenging because of the low positron fraction of Y-90 (32 × 10-6). The resulting low number of events can be compensated by the high sensitivity of long axial field-of-view (LAFOV) PET/CT scanners. Nevertheless, the reduced event statistics require optimization of the imaging protocol to achieve high image quality (IQ) and quantification accuracy sufficient for post-treatment dosimetry. METHODS Two phantoms (NEMA IEC and AbdoMan phantoms, mimicking human liver) filled with Y-90 and a 4:1 sphere (tumor)-to-background ratio were scanned for 24 h with the Biograph Vision Quadra (Siemens Healthineers). Eight patients were scanned after Y-90 radioembolization (1.3-4.7 GBq) using the optimized protocol (obtained by phantom studies). The IQ, contrast recovery coefficients (CRCs) and noise were evaluated for their limited and full acceptance angles, different rebinned scan durations, numbers of iterations and post-reconstruction filters. The s-value-based absorbed doses were calculated to assess their suitability for dosimetry. RESULTS The phantom studies demonstrate that two iterations, five subsets and a 4 mm Gaussian filter provide a reasonable compromise between a high CRC and low noise. For a 20 min scan duration, an adequate CRC of 56% (vs. 24 h: 62%, 20 mm sphere) was obtained, and the noise was reduced by a factor of 1.4, from 40% to 29%, using the full acceptance angle. The patient scan results were consistent with those from the phantom studies, and the impacts on the absorbed doses were negligible for all of the studied parameter sets, as the maximum percentage difference was -3.89%. CONCLUSIONS With 2i5s, a 4 mm filter and a scan duration of 20 min, IQ and quantification accuracy that are suitable for post-treatment dosimetry of Y-90 radioembolization can be achieved.
Collapse
Affiliation(s)
- Pia M. Linder
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Wenhong Lan
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Nils F. Trautwein
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Sebastian von Beschwitz
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Jürgen Kupferschläger
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, 72074 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72074 Tuebingen, Germany
| | - Gerd Grözinger
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Helmut Dittmann
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72074 Tuebingen, Germany
| | - Fabian P. Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.M.L.); (W.L.); (S.v.B.); (C.l.F.); (H.D.)
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, 72074 Tuebingen, Germany;
| |
Collapse
|
2
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
3
|
Labour J, Boissard P, Baudier T, Khayi F, Kryza D, Durebex PV, Martino SPD, Mognetti T, Sarrut D, Badel JN. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8:56. [PMID: 34318383 PMCID: PMC8316557 DOI: 10.1186/s40658-021-00402-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET imaging of 90Y-microsphere distribution following radioembolisation is challenging due to the count-starved statistics from the low branching ratio of e+/e- pair production during 90Y decay. PET systems using silicon photo-multipliers have shown better 90Y image quality compared to conventional photo-multiplier tubes. The main goal of the present study was to evaluate reconstruction parameters for different phantom configurations and varying listmode acquisition lengths to improve quantitative accuracy in 90Y dosimetry, using digital photon counting PET/CT. METHODS Quantitative PET and dosimetry accuracy were evaluated using two uniform cylindrical phantoms specific for PET calibration validation. A third body phantom with a 9:1 hot sphere-to-background ratio was scanned at different activity concentrations of 90Y. Reconstructions were performed using OSEM algorithm with varying parameters. Time-of-flight and point-spread function modellings were included in all reconstructions. Absorbed dose calculations were carried out using voxel S-values convolution and were compared to reference Monte Carlo simulations. Dose-volume histograms and root-mean-square deviations were used to evaluate reconstruction parameter sets. Using listmode data, phantom and patient datasets were rebinned into various lengths of time to assess the influence of count statistics on the calculation of absorbed dose. Comparisons between the local energy deposition method and the absorbed dose calculations were performed. RESULTS Using a 2-mm full width at half maximum post-reconstruction Gaussian filter, the dosimetric accuracy was found to be similar to that found with no filter applied but also reduced noise. Larger filter sizes should not be used. An acquisition length of more than 10 min/bed reduces image noise but has no significant impact in the quantification of phantom or patient data for the digital photon counting PET. 3 iterations with 10 subsets were found suitable for large spheres whereas 1 iteration with 30 subsets could improve dosimetry for smaller spheres. CONCLUSION The best choice of the combination of iterations and subsets depends on the size of the spheres. However, one should be careful on this choice, depending on the imaging conditions and setup. This study can be useful in this choice for future studies for more accurate 90Y post-dosimetry using a digital photon counting PET/CT.
Collapse
Affiliation(s)
- Joey Labour
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Thomas Baudier
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Fouzi Khayi
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; LAGEPP UMR 5007 CNRS, Lyon, France
| | | | | | | | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
4
|
Laymon CM, Minhas DS, Royse SK, Aizenstein HJ, Cohen AD, Tudorascu DL, Klunk WE. Characterization of point-spread function specification error on Geometric Transfer Matrix partial volume correction in [ 11C]PiB amyloid imaging. EJNMMI Phys 2021; 8:54. [PMID: 34283320 PMCID: PMC8292473 DOI: 10.1186/s40658-021-00403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose Partial-volume correction (PVC) using the Geometric Transfer Matrix (GTM) method is used in positron emission tomography (PET) to compensate for the effects of spatial resolution on quantitation. We evaluate the effect of misspecification of scanner point-spread function (PSF) on GTM results in amyloid imaging, including the effect on amyloid status classification (positive or negative). Methods Twenty-nine subjects with Pittsburgh Compound B ([11C]PiB) PET and structural T1 MR imaging were analyzed. FreeSurfer 5.3 (FS) was used to parcellate MR images into regions-of-interest (ROIs) that were used to extract radioactivity concentration values from the PET images. GTM PVC was performed using our “standard” PSF parameterization [3D Gaussian, full-width at half-maximum (w) of approximately 5 mm]. Additional GTM PVC was performed with “incorrect” parameterizations, taken around the correct value. The result is a set of regional activity values for each of the GTM applications. For each case, activity values from various ROIs were combined and normalized to produce standardized uptake value ratios (SUVRs) for nine standard [11C]PiB quantitation ROIs and a global region. GTM operating-point characteristics were determined from the slope of apparent SUVR versus w curves. Results Errors in specification of w on the order of 1 mm (3D) mainly produce only modest errors of up to a few percent. An exception was the anterior ventral striatum in which fractional errors of up to 0.29 per millimeter (3D) of error in w were observed. Conclusion While this study does not address all the issues regarding the quantitative strengths and weakness of GTM PVC, we find that with reasonable caution, the unavoidable inaccuracies associated with PSF specification do not preclude its use in amyloid quantitation. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00403-5.
Collapse
Affiliation(s)
- Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Bioengineering, University of Pittsburgh, PET Center, PUH B930, 200 Lothrop St, Pittsburgh, PA, 15213, USA.
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Royse
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, PET Center, PUH B930, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Grisanti F, Prieto E, Bastidas JF, Sancho L, Rodrigo P, Beorlegui C, Iñarrairaegui M, Bilbao JI, Sangro B, Rodríguez-Fraile M. 3D voxel-based dosimetry to predict contralateral hypertrophy and an adequate future liver remnant after lobar radioembolization. Eur J Nucl Med Mol Imaging 2021; 48:3048-3057. [PMID: 33674893 DOI: 10.1007/s00259-021-05272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Volume changes induced by selective internal radiation therapy (SIRT) may increase the possibility of tumor resection in patients with insufficient future liver remnant (FLR). The aim was to identify dosimetric and clinical parameters associated with contralateral hepatic hypertrophy after lobar/extended lobar SIRT with 90Y-resin microspheres. MATERIALS AND METHODS Patients underwent 90Y PET/CT after lobar or extended lobar (right + segment IV) SIRT. 90Y voxel dosimetry was retrospectively performed (PLANET Dose; DOSIsoft SA). Mean absorbed doses to tumoral/non-tumoral-treated volumes (NTL) and dose-volume histograms were extracted. Clinical variables were collected. Patients were stratified by FLR at baseline (T0-FLR): < 30% (would require hypertrophy) and ≥ 30%. Changes in volume of the treated, non-treated liver, and FLR were calculated at < 2 (T1), 2-5 (T2), and 6-12 months (T3) post-SIRT. Univariable and multivariable regression analyses were performed to identify predictors of atrophy, hypertrophy, and increase in FLR. The best cut-off value to predict an increase of FLR to ≥ 40% was defined using ROC analysis. RESULTS Fifty-six patients were studied; most had primary liver tumors (71.4%), 40.4% had cirrhosis, and 39.3% had been previously treated with chemotherapy. FLR in patients with T0-FLR < 30% increased progressively (T0: 25.2%; T1: 32.7%; T2: 38.1%; T3: 44.7%). No dosimetric parameter predicted atrophy. Both NTL-Dmean and NTL-V30 (fraction of NTL exposed to ≥ 30 Gy) were predictive of increase in FLR in patients with T0 FLR < 30%, the latter also in the total cohort of patients. Hypertrophy was not significantly associated with tumor dose or tumor size. When ≥ 49% of NTL received ≥ 30 Gy, FLR increased to ≥ 40% (accuracy: 76.4% in all patients and 80.95% in T0-FLR < 30% patients). CONCLUSION NTL-Dmean and NTL exposed to ≥ 30 Gy (NTL-V30) were most significantly associated with increase in FLR (particularly among patients with T0-FLR < 30%). When half of NTL received ≥ 30 Gy, FLR increased to ≥ 40%, with higher accuracy among patients with T0-FLR < 30%.
Collapse
Affiliation(s)
- Fabiana Grisanti
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Elena Prieto
- Department of Medical Physics, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Lidia Sancho
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Madrid, Spain
| | - Pablo Rodrigo
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | | |
Collapse
|
6
|
Rodríguez-Fraile M, Ezponda A, Grisanti F, Morán V, Calvo M, Berián P, de la Cuesta AM, Sancho L, Iñarrairaegui M, Sangro B, Bilbao JI. The joint use of 99mTc-MAA-SPECT/CT and cone-beam CT optimizes radioembolization planning. EJNMMI Res 2021; 11:23. [PMID: 33661428 PMCID: PMC7933314 DOI: 10.1186/s13550-021-00764-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To determine which imaging method used during radioembolization (RE) work-up: contrast-enhanced computed tomography (CECT), 99mTc-MAA-SPECT/CT or cone beam-CT (CBCT), more accurately predicts the final target volume (TgV) as well as the influence that each modality has in the dosimetric calculation. Methods TgVs from 99mTc-MAA-SPECT/CT, CECT and CBCT were consecutively obtained in 24 patients treated with RE and compared with 90Y PET/CT TgV. Using the TgVs estimated by each imaging modality and a fictitious activity of 1 GBq, the corresponding absorbed doses by tumor and non-tumoral parenchyma were calculated for each patient. The absorbed doses for each modality were compared with the ones obtained using 90Y PET/CT TgV. Results 99mTc-MAA-SPECT/CT predicted 90Y PET/CT TgV better than CBCT or CECT, even for selective or superselective administrations. Likewise, 99mTc-MAA-SPECT/CT showed dosimetric values more similar to those obtained with 90Y PET/CT. Nevertheless, CBCT provided essential information for RE planning, such as ensuring the total coverage of the tumor and, in cases with more than one feeding artery, splitting the activity according to the volume of tumor perfused by each artery. Conclusion The joint use of 99mTc-MAA-SPECT/CT and CBCT optimizes dosimetric planning for RE procedures, enabling a more accurate personalized approach.
Collapse
Affiliation(s)
| | - Ana Ezponda
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabiana Grisanti
- Nuclear Medicine Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Verónica Morán
- Medical Physics Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Marta Calvo
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Berián
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Lidia Sancho
- Nuclear Medicine Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Mercedes Iñarrairaegui
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
7
|
Antón R, Antoñana J, Aramburu J, Ezponda A, Prieto E, Andonegui A, Ortega J, Vivas I, Sancho L, Sangro B, Bilbao JI, Rodríguez-Fraile M. A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 2021; 11:3895. [PMID: 33594143 PMCID: PMC7886872 DOI: 10.1038/s41598-021-83414-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
Collapse
Affiliation(s)
- Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Javier Antoñana
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Ana Ezponda
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Elena Prieto
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Asier Andonegui
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Julio Ortega
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel Vivas
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Lidia Sancho
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 28027, Madrid, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Hepatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029, Madrid, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
8
|
Siman W, Mikell JK, Mawlawi OR, Mourtada F, Kappadath SC. Dose volume histogram-based optimization of image reconstruction parameters for quantitative 90 Y-PET imaging. Med Phys 2018; 46:229-237. [PMID: 30375655 DOI: 10.1002/mp.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE 90 Y-microsphere radioembolization or selective internal radiation therapy is increasingly being used as a treatment option for tumors that are not candidates for surgery and external beam radiation therapy. Recently, volumetric 90 Y-dosimetry techniques have been implemented to explore tumor dose-response on the basis of 3D 90 Y-activity distribution from PET imaging. Despite being a theranostic study, the optimization of quantitative 90 Y-PET image reconstruction still uses the mean activity concentration recovery coefficient (RC) as the objective function, which is more relevant to diagnostic and detection tasks than is to dosimetry. The aim of this study was to optimize 90 Y-PET image reconstruction by minimizing errors in volumetric dosimetry via the dose volume histogram (DVH). We propose a joint optimization of the number of equivalent iterations (the product of the iterations and subsets) and the postreconstruction filtration (FWHM) to improve the accuracy of voxel-level 90 Y dosimetry. METHODS A modified NEMA IEC phantom was used to emulate clinically relevant 90 Y-PET imaging conditions through various combinations of acquisition durations, activity concentrations, sphere-to-background ratios, and sphere diameters. PET data were acquired in list mode for 300 min in a single-bed position; we then rebinned the list mode PET data to 60, 45, 30, 15, and 5 min per bed, with 10 different realizations. Errors in the DVH were calculated as root mean square errors (RMSE) of the differences in the image-based DVH and the expected DVH. The new optimization approach was tested in a phantom study, and the results were compared with the more commonly used objective function of the mean activity concentration RC. RESULTS In a wide range of clinically relevant imaging conditions, using 36 equivalent iterations with a 5.2-mm filtration resulted in decreased systematic errors in volumetric 90 Y dosimetry, quantified as image-based DVH, in 90 Y-PET images reconstructed using the ordered subset expectation maximization (OSEM) iterative reconstruction algorithm with time of flight (TOF) and point spread function (PSF) modeling. Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of 90 Y-PET iterations and filtration for volumetric quantification of the 90 Y dose, was shown to be superior to conventional RC-based optimization approaches for image-based absorbed dose quantification. CONCLUSION Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of iterations and filtration to reduce errors in the PET-based volumetric quantification 90 Y dose, is relevant to dosimetry in therapy procedures. The proposed optimization method using DVH as the objective function could be applied to any imaging modality used to assess voxel-level quantitative information.
Collapse
Affiliation(s)
- Wendy Siman
- Department of Radiology, The University of Tennessee Medical Center, Knoxville, TN, USA.,The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI, USA
| | - Osama R Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | | | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Kretz D, Hesser J, Glatting G, Diehl S, Wenz F, He W, Zheng L. Modeling sphere dynamics in blood vessels for SIRT pre-planning - To fathom the potential and limitations. Z Med Phys 2018; 29:5-15. [PMID: 30049550 DOI: 10.1016/j.zemedi.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 11/26/2022]
Abstract
For selective internal radiation therapy (SIRT) the calculation of the 3D distribution of spheres based on individual blood flow properties is still an open and relevant research question. The purpose of this work is to develop and analyze a new treatment planning method for SIRT to calculate the absorbed dose distribution. For this intention, flow dynamics of the SIRT-spheres inside the blood vessels was simulated. The challenge is treatment planning solely using high-resolution imaging data available before treatment. The resolution required to reliably predict the sphere distribution and hence the dose was investigated. For this purpose, arteries of the liver were segmented from a contrast-enhanced angiographic CT. Due to the limited resolution of the given CT, smaller vessels were generated via a vessel model. A combined 1D/3D-flow simulation model was implemented to simulate the final 3D distribution of spheres and dose. Results were evaluated against experimental data from Y90-PET. Analysis showed that the resolution of the vessels within the angiographic CT of about 0.5mm should be improved to a limit of about 150μm to reach a reliable prediction.
Collapse
Affiliation(s)
- Dominik Kretz
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany.
| | - Jürgen Hesser
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Central Institute of Mental Health (ZI), Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Steffen Diehl
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Wanji He
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Lei Zheng
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| |
Collapse
|
10
|
Reynés-Llompart G, Gámez-Cenzano C, Vercher-Conejero JL, Sabaté-Llobera A, Calvo-Malvar N, Martí-Climent JM. Phantom, clinical, and texture indices evaluation and optimization of a penalized-likelihood image reconstruction method (Q.Clear) on a BGO PET/CT scanner. Med Phys 2018; 45:3214-3222. [PMID: 29782657 DOI: 10.1002/mp.12986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the behavior of a penalized-likelihood image reconstruction method (Q.Clear) under different count statistics and lesion-to-background ratios (LBR) on a BGO scanner, in order to obtain an optimum penalization factor (β value) to study and optimize for different acquisition protocols and clinical goals. METHODS Both phantom and patient images were evaluated. Data from an image quality phantom were acquired using different Lesion-to-Background ratios and acquisition times. Then, each series of the phantom was reconstructed using β values between 50 and 500, at intervals of 50. Hot and cold contrasts were obtained, as well as background variability and contrast-to-noise ratio (CNR). Fifteen 18 F-FDG patients (five brain scans and 10 torso acquisitions) were acquired and reconstructed using the same β values as in the phantom reconstructions. From each lesion in the torso acquisition, noise, contrast, and signal-to-noise ratio (SNR) were computed. Image quality was assessed by two different nuclear medicine physicians. Additionally, the behaviors of 12 different textural indices were studied over 20 different lesions. RESULTS Q.Clear quantification and optimization in patient studies depends on the activity concentration as well as on the lesion size. In the studied range, an increase on β is translated in a decrease in lesion contrast and noise. The net product is an overall increase in the SNR, presenting a tendency to a steady value similar to the CNR in phantom data. As the activity concentration or the sphere size increase the optimal β increases, similar results are obtained from clinical data. From the subjective quality assessment, the optimal β value for torso scans is in a range between 300 and 400, and from 100 to 200 for brain scans. For the recommended torso β values, texture indices present coefficients of variation below 10%. CONCLUSIONS Our phantom and patients demonstrate that improvement of CNR and SNR of Q.Clear algorithm which depends on the studied conditions and the penalization factor. Using the Q.Clear reconstruction algorithm in a BGO scanner, a β value of 350 and 200 appears to be the optimal value for 18F-FDG oncology and brain PET/CT, respectively.
Collapse
Affiliation(s)
- Gabriel Reynés-Llompart
- PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Medical Physics Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Gámez-Cenzano
- PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Vercher-Conejero
- PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Sabaté-Llobera
- PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nahúm Calvo-Malvar
- PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
11
|
Padia SA, Lewandowski RJ, Johnson GE, Sze DY, Ward TJ, Gaba RC, Baerlocher MO, Gates VL, Riaz A, Brown DB, Siddiqi NH, Walker TG, Silberzweig JE, Mitchell JW, Nikolic B, Salem R. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J Vasc Interv Radiol 2017; 28:1-15. [DOI: 10.1016/j.jvir.2016.09.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 02/09/2023] Open
|
12
|
Rowley LM, Bradley KM, Boardman P, Hallam A, McGowan DR. Optimization of Image Reconstruction for 90Y Selective Internal Radiotherapy on a Lutetium Yttrium Orthosilicate PET/CT System Using a Bayesian Penalized Likelihood Reconstruction Algorithm. J Nucl Med 2016; 58:658-664. [PMID: 27688476 DOI: 10.2967/jnumed.116.176552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
Imaging on a γ-camera with 90Y after selective internal radiotherapy (SIRT) may allow for verification of treatment delivery but suffers relatively poor spatial resolution and imprecise dosimetry calculation. 90Y PET/CT imaging is possible on 3-dimensional, time-of-flight machines; however, images are usually poor because of low count statistics and noise. A new PET reconstruction software using a Bayesian penalized likelihood (BPL) reconstruction algorithm (termed Q.Clear) was investigated using phantom and patient scans to optimize the reconstruction for post-SIRT imaging and clarify whether BPL leads to an improvement in clinical image quality using 90Y. Methods: Phantom studies over an activity range of 0.5-4.2 GBq were performed to assess the contrast recovery, background variability, and contrast-to-noise ratio for a range of BPL and ordered-subset expectation maximization (OSEM) reconstructions on a PET/CT scanner. Patient images after SIRT were reconstructed using the same parameters and were scored and ranked on the basis of image quality, as assessed by visual evaluation, with the corresponding SPECT/CT Bremsstrahlung images by 2 experienced radiologists. Results: Contrast-to-noise ratio was significantly better in BPL reconstructions when compared with OSEM in phantom studies. The patient-derived BPL and matching Bremsstrahlung images scored higher than OSEM reconstructions when scored by radiologists. BPL with a β value of 4,000 was ranked the highest of all images. Deadtime was apparent in the system above a total phantom activity of 3.3 GBq. Conclusion: BPL with a β value of 4,000 is the optimal image reconstruction in PET/CT for confident radiologic reading when compared with other reconstruction parameters for 90Y imaging after SIRT imaging. Activity in the field of view should be below 3.3 GBq at the time of PET imaging to avoid deadtime losses for this scanner.
Collapse
Affiliation(s)
- Lisa M Rowley
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kevin M Bradley
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; and
| | - Philip Boardman
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; and
| | - Aida Hallam
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Eldib M, Oesingmann N, Faul DD, Kostakoglu L, Knešaurek K, Fayad ZA. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study. Med Phys 2016; 43:4768. [DOI: 10.1118/1.4958958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Gong K, Cherry SR, Qi J. On the assessment of spatial resolution of PET systems with iterative image reconstruction. Phys Med Biol 2016; 61:N193-202. [PMID: 26864088 DOI: 10.1088/0031-9155/61/5/n193] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
Collapse
Affiliation(s)
- Kuang Gong
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | | | | |
Collapse
|
15
|
Brain PET imaging optimization with time of flight and point spread function modelling. Phys Med 2015; 31:948-955. [DOI: 10.1016/j.ejmp.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022] Open
|
16
|
Rodríguez-Fraile M, Iñarrairaegui M. Radioembolization with 90Y-microspheres for liver tumors. Rev Esp Med Nucl Imagen Mol 2015. [DOI: 10.1016/j.remnie.2015.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med 2015; 56:1285-91. [PMID: 26135111 DOI: 10.2967/jnumed.115.156711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/23/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. METHODS Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. RESULTS With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. CONCLUSION Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y.
Collapse
Affiliation(s)
| | - Jasper Chaal
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Gabriel Tjio
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - John J Totman
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, Tennessee; and
| | - David W Townsend
- A*STAR-NUS Clinical Imaging Research Center, Singapore Department of Diagnostic Radiology, National University Hospital, Singapore
| |
Collapse
|
18
|
Carlier T, Willowson KP, Fourkal E, Bailey DL, Doss M, Conti M. 90Y -PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction. Med Phys 2015; 42:4295-309. [DOI: 10.1118/1.4922685] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 2015; 42:1202-22. [PMID: 25967868 PMCID: PMC4480824 DOI: 10.1007/s00259-015-3059-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/01/2015] [Indexed: 01/02/2023]
Abstract
Purpose To investigate and compare the quantitative accuracy of 90Y imaging across different generation PET/CT scanners, for the purpose of dosimetry after radioembolization with resin microspheres. Methods A strict experimental and imaging protocol was followed by 47 international sites using the NEMA 2007/IEC 2008 PET body phantom with an 8-to-1 sphere-to-background ratio of 90Y solution. The phantom was imaged over a 7-day period (activity ranging from 0.5 to 3.0 GBq) and all reconstructed data were analysed at a core laboratory for consistent processing. Quantitative accuracy was assessed through measures of total phantom activity, activity concentration in background and hot spheres, misplaced counts in a nonradioactive insert, and background variability. Results Of the 69 scanners assessed, 37 had both time-of-flight (ToF) and resolution recovery (RR) capability. These current generation scanners from GE, Philips and Siemens could reconstruct background concentration measures to within 10 % of true values over the evaluated range, with greater deviations on the Philips systems at low count rates, and demonstrated typical partial volume effects on hot sphere recovery, which dominated spheres of diameter <20 mm. For spheres >20 mm in diameter, activity concentrations were consistently underestimated by about 20 %. Non-ToF scanners from GE Healthcare and Siemens were capable of producing accurate measures, but with inferior quantitative recovery compared with ToF systems. Conclusion Current generation ToF scanners can consistently reconstruct 90Y activity concentrations, but they underestimate activity concentrations in small structures (≤37 mm diameter) within a warm background due to partial volume effects and constraints of the reconstruction algorithm. At the highest count rates investigated, measures of background concentration (about 300 kBq/ml) could be estimated on average to within 1 %, 5 % and 2 % for GE Healthcare (all-pass filter, RR + ToF), Philips (4i8s ToF) and Siemens (2i21s all-pass filter, RR + ToF) ToF systems, respectively. Over the range of activities investigated, comparable performance between GE Healthcare and Siemens ToF systems suggests suitability for quantitative analysis in a scenario analogous to that of postradioembolization imaging for treatment of liver cancer.
Collapse
Affiliation(s)
- Kathy P Willowson
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, 2006, NSW, Australia,
| | | | | | | |
Collapse
|
20
|
Rodríguez-Fraile M, Iñarrairaegui M. [Radioembolization with (90)Y-microspheres for liver tumors]. Rev Esp Med Nucl Imagen Mol 2015; 34:244-57. [PMID: 25911062 DOI: 10.1016/j.remn.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- M Rodríguez-Fraile
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Navarra; Área de Oncología Hepatobiliopancreática, Clínica Universidad de Navarra, Pamplona, Navarra, España; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), España.
| | - M Iñarrairaegui
- Unidad de Hepatología, Clínica Universidad de Navarra, Pamplona, Navarra, España; Área de Oncología Hepatobiliopancreática, Clínica Universidad de Navarra, Pamplona, Navarra, España; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, España
| |
Collapse
|