1
|
Hendriks P, Boel F, Oosterveer TTM, Broersen A, de Geus-Oei LF, Dijkstra J, Burgmans MC. Ablation margin quantification after thermal ablation of malignant liver tumors: How to optimize the procedure? A systematic review of the available evidence. Eur J Radiol Open 2023; 11:100501. [PMID: 37405153 PMCID: PMC10316004 DOI: 10.1016/j.ejro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To minimize the risk of local tumor progression after thermal ablation of liver malignancies, complete tumor ablation with sufficient ablation margins is a prerequisite. This has resulted in ablation margin quantification to become a rapidly evolving field. The aim of this systematic review is to give an overview of the available literature with respect to clinical studies and technical aspects potentially influencing the interpretation and evaluation of ablation margins. Methods The Medline database was reviewed for studies on radiofrequency and microwave ablation of liver cancer, ablation margins, image processing and tissue shrinkage. Studies included in this systematic review were analyzed for qualitative and quantitative assessment methods of ablation margins, segmentation and co-registration methods, and the potential influence of tissue shrinkage occurring during thermal ablation. Results 75 articles were included of which 58 were clinical studies. In most clinical studies the aimed minimal ablation margin (MAM) was ≥ 5 mm. In 10/31 studies, MAM quantification was performed in 3D rather than in three orthogonal image planes. Segmentations were performed either semi-automatically or manually. Rigid and non-rigid co-registration algorithms were used about as often. Tissue shrinkage rates ranged from 7% to 74%. Conclusions There is a high variability in ablation margin quantification methods. Prospectively obtained data and a validated robust workflow are needed to better understand the clinical value. Interpretation of quantified ablation margins may be influenced by tissue shrinkage, as this may cause underestimation.
Collapse
Affiliation(s)
- Pim Hendriks
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fleur Boel
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo TM Oosterveer
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander Broersen
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Biomedical Photonic Imaging Group, University of Twente, the Netherlands
| | - Jouke Dijkstra
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark C Burgmans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Lee J, Rhim H, Lee MW, Kang TW, Song KD, Lee JK. Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in Ex Vivo Bovine Liver. Korean J Radiol 2022; 23:42-51. [PMID: 34983092 PMCID: PMC8743151 DOI: 10.3348/kjr.2021.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to investigate the direction of tissue contraction after microwave ablation in ex vivo bovine liver models. Materials and Methods Ablation procedures were conducted in a total of 90 sites in ex vivo bovine liver models, including the surface (n = 60) and parenchyma (n = 30), to examine the direction of contraction of the tissue in the peripheral and central regions from the microwave antenna. Three commercially available 2.45-GHz microwave systems (Emprint, Neuwave, and Surblate) were used. For surface ablation, the lengths of two overlapped square markers were measured after 2.5- and 5-minutes ablations (n = 10 ablations for each system for each ablation time). For parenchyma ablation, seven predetermined distances between the markers were measured on the cutting plane after 5- and 10-minutes ablations (n = 5 ablations for each system for each ablation time). The contraction in the radial and longitudinal directions and the sphericity index (SI) of the ablation zones were compared between the three systems using analysis of variance. Results In the surface ablation experiment, the mean longitudinal contraction ratio and SI from a 5-minutes ablation using the Emprint, Neuwave, and Surblate systems were 28.92% and 1.04, 20.10% and 0.53, and 24.90% and 0.45, respectively (p < 0.001). A positive correlation between longitudinal contraction and SI was noted, and a similar radial contraction was observed. In the parenchyma ablation experiment, the mean longitudinal contraction ratio and SI from a 10-minutes ablation using the three pieces of equipment were 38.60% and 1.06, 32.45% and 0.61, and 28.50% and 0.50, respectively (p < 0.001). There was a significant difference in the longitudinal contraction properties, whereas there was no significant difference in the radial contraction properties. Conclusion The degree of longitudinal contraction showed significant differences depending on the microwave ablation equipment, which may affect the SI of the ablation zone.
Collapse
Affiliation(s)
- Junhyok Lee
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hyunchul Rhim
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Tae Wook Kang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung Doo Song
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Kyong Lee
- Department of Radiology, Mokdong Hospital, Ewha Womans University, School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Ziv O, Goldberg SN, Nissenbaum Y, Sosna J, Weiss N, Azhari H. In vivo noninvasive three-dimensional (3D) assessment of microwave thermal ablation zone using non-contrast-enhanced x-ray CT. Med Phys 2020; 47:4721-4734. [PMID: 32745257 DOI: 10.1002/mp.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To develop an image processing methodology for noninvasive three-dimensional (3D) quantification of microwave thermal ablation zones in vivo using x-ray computed tomography (CT) imaging without injection of a contrast enhancing material. METHODS Six microwave (MW) thermal ablation procedures were performed in three pigs. The ablations were performed with a constant heating duration of 8 min and power level of 30 W. During the procedure images from sixty 1 mm thick slices were acquired every 30 s. At the end of all ablation procedures for each pig, a contrast-enhanced scan was acquired for reference. Special algorithms for addressing challenges stemming from the 3D in vivo setup and processing the acquired images were prepared. The algorithms first rearranged the data to account for the oblique needle orientation and for breathing motion. Then, the gray level variance changes were analyzed, and optical flow analysis was applied to the treated volume in order to obtain the ablation contours and reconstruct the ablation zone in 3D. The analysis also included a special correction algorithm for eliminating artifacts caused by proximal major blood vessels and blood flow. Finally, 3D reference reconstructions from the contrast-enhanced scan were obtained for quantitative comparison. RESULTS For four ablations located >3 mm from a large blood vessel, the mean dice similarity coefficient (DSC) and the mean absolute radial discrepancy between the contours obtained from the reference contrast-enhanced images and the contours produced by the algorithm were 0.82 ± 0.03 and 1.92 ± 1.47 mm, respectively. In two cases of ablation adjacent to large blood vessels, the average DSC and discrepancy were: 0.67 ± 0.6 and 2.96 ± 2.15 mm, respectively. The addition of the special correction algorithm utilizing blood vessels mapping improved the mean DSC and the mean absolute discrepancy to 0.85 ± 0.02 and 1.19 ± 1.00 mm, respectively. CONCLUSIONS The developed algorithms provide highly accurate detailed contours in vivo (average error < 2.5 mm) and cope well with the challenges listed above. Clinical implementation of the developed methodology could potentially provide real time noninvasive 3D accurate monitoring of MW thermal ablation in-vivo, provided that the radiation dose can be reduced.
Collapse
Affiliation(s)
- Omri Ziv
- Department of Biomedical Engineering, Technion - IIT, Haifa, 32000, Israel
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem, 91120, Israel.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Yitzhak Nissenbaum
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem, 91120, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem, 91120, Israel.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Noam Weiss
- Department of Biomedical Engineering, Technion - IIT, Haifa, 32000, Israel
| | - Haim Azhari
- Department of Biomedical Engineering, Technion - IIT, Haifa, 32000, Israel
| |
Collapse
|
4
|
Ruiter SJS, Heerink WJ, de Jong KP. Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol 2019; 29:4026-4035. [PMID: 30506218 PMCID: PMC6611060 DOI: 10.1007/s00330-018-5842-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of the present study is to analyze preclinical and clinical data on the performance of the currently US Food and Drug Administration (FDA)-approved microwave ablation (MWA) systems. METHODS A review of the literature, published between January 1, 2005, and December 31, 2016, on seven FDA-approved MWA systems, was conducted. Ratio of ablation zone volume to applied energy R(AZ:E) and sphericity indices were calculated for ex vivo and in vivo experiments. RESULTS Thirty-four studies with ex vivo, in vivo, and clinical data were summarized. In total, 14 studies reporting data on ablation zone volume and applied energy were included for comparison R(AZ:E). A significant correlation between volume and energy was found for the ex vivo experiments (r = 0.85, p < 0.001) in contrast to the in vivo experiments (r = 0.54, p = 0.27). CONCLUSION Manufacturers' algorithms on microwave ablation zone sizes are based on preclinical animal experiments with normal liver parenchyma. Clinical data reporting on ablation zone volume in relation to applied energy and sphericity index during MWA are scarce and require more adequate reporting of MWA data. KEY POINTS • Clinical data reporting on the ablation zone volume in relation to applied energy during microwave ablation are scarce. • Manufacturers' algorithms on microwave ablation zone sizes are based on preclinical animal experiments with normal liver parenchyma. • Preclinical data do not predict actual clinical ablation zone volumes in patients with liver tumors.
Collapse
Affiliation(s)
- Simeon J S Ruiter
- Department of HPB Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Wouter J Heerink
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Center for Medical Imaging, University of Groningen, Groningen, Netherlands
| | - Koert P de Jong
- Department of HPB Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Center for Medical Imaging, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Liu D, Brace CL. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery. Med Phys 2019; 46:4127-4134. [PMID: 31260115 DOI: 10.1002/mp.13688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/07/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of this study was to quantitatively analyze tissue deformation during radiofrequency (RF) and microwave ablation for varying output energy levels. METHODS A total of 46 fiducial markers which were classified into outer, middle, and inner lines were positioned into a single plane around an RF or microwave ablation applicator in each ex vivo bovine liver sample (8 cm × 6 cm × 4 cm, n = 18). Radiofrequency (500 kHz; ~35 W average) or microwave (2.4 GHz; 50-100 W output, ~35-70 W delivered) ablation was performed for 10 min (n = 4-6 each setting). CT images were acquired over the entire liver volume every 15 s. Principle strain magnitude and direction were determined from fiducial marker displacement. Normal and shear strain were then calculated such that negative strain denoted contraction and positive strain denoted expansion. Temporal variations, the final magnitudes, and angles of the strain were compared across energy delivery settings, using one-way ANOVA with post hoc Tukey's tests. RESULTS On average, tissue strain rates peak at around 1 min and decayed exponentially over time. No evidence of tissue expansion was observed. The tissue strains from RF and 50 W, 75 W, and 100 W microwave ablation at 10 min were -8.5%, -38.9%, -54.4%, and -65.7%, respectively, from the inner region and -3.6%, -23.7%, -41.8%, and -44.3%, respectively, from the outer region. Negative strain magnitude was positively correlated to energy delivery in the inner region (Spearman's ρ = -0.99). Microwaves at higher powers (75-100 W) induced significantly more strain than at lower power (50 W) or after RF ablation (P < 0.01). Principal strain angles ranged from 0.8° to -8.1°, indicating that tissue deformed more in the direction transverse to the applicator than along the direction of the applicator. CONCLUSIONS The influence of output energy on tissue deformation during RF and microwave ablation was analyzed. Microwave ablation created significantly greater contraction than RF ablation with similar energy delivery. During microwave ablation, more contraction was noted at higher power levels and in proximity to the antenna. Contraction primarily transverse to the antenna produces ablation zones that are more elongated than the original tissue volume.
Collapse
Affiliation(s)
- Dong Liu
- Departments of Radiology, Biomedical Engineering, University of Wisconsin, Madison, WI, 53705, USA
| | - Christopher L Brace
- Departments of Radiology, Biomedical Engineering, University of Wisconsin, Madison, WI, 53705, USA
| |
Collapse
|
6
|
Strigari L, Minosse S, D'Alessio D, Farina L, Cavagnaro M, Cassano B, Pinto R, Vallati G, Lopresto V. Microwave thermal ablation using CT-scanner for predicting the variation of ablated region over time: advantages and limitations. Phys Med Biol 2019; 64:115021. [PMID: 30995620 DOI: 10.1088/1361-6560/ab1a67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims at investigating in real-time the structural and dynamical changes occurring in an ex vivo tissue during a microwave thermal ablation (MTA) procedure. The experimental set-up was based on ex vivo liver tissue inserted in a dedicated box, in which 3 fibre-optic (FO) temperature probes were introduced to measure the temperature increase over time. Computed tomography (CT) imaging technique was exploited to experimentally study in real-time the Hounsfield Units (HU) modification occurring during MTA. The collected image data were processed with a dedicated MATLAB tool, developed to analyse the FO positions and HU modifications from the CT images acquired over time before and during the ablation procedures. The radial position of a FO temperature probe (rFO) and the value of HU in the region of interest (ROI) containing the probe (HUo), along with the corresponding value of HU in the contralateral ROI with respect to the MTA antenna applicator (HUc), were determined and registered over time during and after the MTA procedure. Six experiments were conducted to confirm results. The correlation between temperature and the above listed predictors was investigated using univariate and multivariate analysis. At the multivariate analysis, the time, rFO and HUc resulted significant predictive factors of the logarithm of measured temperature. The correlation between predicted and measured temperatures was 0.934 (p < 0.001). The developed tool allows identifying and registering the image-based parameters useful for predicting the temperature variation over time in each investigated voxel by taking into consideration the HU variation.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, IFO, via Elio Chianesi, 53, 00144, Rome, Italy. Current address: Department of Medical Physics, St. Orsola-Malpighi University Hospital, via Massarenti 9 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lopresto V, Strigari L, Farina L, Minosse S, Pinto R, D’Alessio D, Cassano B, Cavagnaro M. CT-based investigation of the contraction ofex vivotissue undergoing microwave thermal ablation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aaaf07] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Ziv O, Goldberg SN, Nissenbaum Y, Sosna J, Weiss N, Azhari H. Optical flow and image segmentation analysis for noninvasive precise mapping of microwave thermal ablation in X-ray CT scans - ex vivo study. Int J Hyperthermia 2017; 34:744-755. [PMID: 28866952 DOI: 10.1080/02656736.2017.1375160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop image processing algorithms for noninvasive mapping of microwave thermal ablation using X-ray CT. METHODS Ten specimens of bovine liver were subjected to microwave ablation (20-80 W, 8 min) while scanned by X-ray CT at 5 s intervals. Specimens were cut and manually traced by two observers. Two algorithms were developed and implemented to map the ablation zone. The first algorithm utilises images segmentation of Hounsfield units changes (ISHU). The second algorithm utilises radial optical flow (ROF). Algorithm sensitivity to spatiotemporal under-sampling was assessed by decreasing the acquisition rate and reducing the number of acquired projections used for image reconstruction in order to evaluate the feasibility of implementing radiation reduction techniques. RESULTS The average radial discrepancy between the ISHU and ROF contours and the manual tracing were 1.04±0.74 and 1.16±0.79mm, respectively. When diluting the input data, the ISHU algorithm retained its accuracy, ranging from 1.04 to 1.79mm. By contrast, the ROF algorithm performance became inconsistent at low acquisition rates. Both algorithms were not sensitive to projections reduction, (ISHU: 1.24±0.83mm, ROF: 1.53±1.15mm, for reduction by eight fold). Ablations near large blood vessels affected the ROF algorithm performance (1.83±1.30mm; p < 0.01), whereas ISHU performance remained the same. CONCLUSION The two suggested noninvasive ablation mapping algorithms can provide highly accurate contouring of the ablation zone at low scan rates. The ISHU algorithm may be more suitable for clinical practice as it appears more robust when radiation dose reduction strategies are employed and when the ablation zone is near large blood vessels.
Collapse
Affiliation(s)
- Omri Ziv
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| | - S Nahum Goldberg
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel.,c Department of Radiology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Yitzhak Nissenbaum
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel
| | - Jacob Sosna
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel.,c Department of Radiology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Noam Weiss
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| | - Haim Azhari
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| |
Collapse
|
9
|
Weiss N, Goldberg SN, Nissenbaum Y, Sosna J, Azhari H. Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis. Med Phys 2016; 43:4476. [PMID: 27487864 DOI: 10.1118/1.4954843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. METHODS Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. RESULTS Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). CONCLUSIONS Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time monitoring and improve the clinical outcome.
Collapse
Affiliation(s)
- Noam Weiss
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Yitzhak Nissenbaum
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Haim Azhari
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel
| |
Collapse
|
10
|
Amabile C, Farina L, Lopresto V, Pinto R, Cassarino S, Tosoratti N, Goldberg SN, Cavagnaro M. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model. Int J Hyperthermia 2016; 33:101-109. [DOI: 10.1080/02656736.2016.1208292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Laura Farina
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome
| | - Vanni Lopresto
- Division of Health Protection Technologies, Casaccia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Rosanna Pinto
- Division of Health Protection Technologies, Casaccia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | | | - S. Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Marta Cavagnaro
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome
| |
Collapse
|
11
|
Jacob JM, Williamson SR, Gondim DD, Leese JA, Terry C, Grignon DJ, Boris RS. Characteristics of the Peritumoral Pseudocapsule Vary Predictably With Histologic Subtype of T1 Renal Neoplasms. Urology 2015; 86:956-61. [DOI: 10.1016/j.urology.2015.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
|