1
|
De Benetti F, Brosch-Lenz J, Guerra González JM, Uribe C, Eiber M, Navab N, Wendler T. DosePatch: physics-inspired cropping layout for patch-based Monte Carlo simulations to provide fast and accurate internal dosimetry. EJNMMI Phys 2024; 11:51. [PMID: 38922372 PMCID: PMC11208390 DOI: 10.1186/s40658-024-00646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Dosimetry-based personalized therapy was shown to have clinical benefits e.g. in liver selective internal radiation therapy (SIRT). Yet, there is no consensus about its introduction into clinical practice, mainly as Monte Carlo simulations (gold standard for dosimetry) involve massive computation time. We addressed the problem of computation time and tested a patch-based approach for Monte Carlo simulations for internal dosimetry to improve parallelization. We introduce a physics-inspired cropping layout for patch-based MC dosimetry, and compare it to cropping layouts of the literature as well as dosimetry using organ-S-values, and dose kernels, taking whole-body Monte Carlo simulations as ground truth. This was evaluated in five patients receiving Yttrium-90 liver SIRT. RESULTS The patch-based Monte Carlo approach yielded the closest results to the ground truth, making it a valid alternative to the conventional approach. Our physics-inspired cropping layout and mosaicking scheme yielded a voxel-wise error of < 2% compared to whole-body Monte Carlo in soft tissue, while requiring only ≈ 10% of the time. CONCLUSIONS This work demonstrates the feasibility and accuracy of physics-inspired cropping layouts for patch-based Monte Carlo simulations.
Collapse
Affiliation(s)
- Francesca De Benetti
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Germany
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Mario Guerra González
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Germany
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Germany
| | - Thomas Wendler
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Germany.
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany.
- Institute of Digital Medicine, University Hospital Augsburg, Neusaess, Germany.
- Clinical Computational Medical Imaging Research, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
2
|
Toward three-dimensional patient-specific internal dosimetry using GATE Monte Carlo technique. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Neira-Castro S, Guiu-Souto J, Pardo-Montero J. Dosimetry in positron emission tomography. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Neira S, Guiu‐Souto J, Pais P, Rodríguez Martínez de Llano S, Fernández C, Pubul V, Ruibal Á, Pombar M, Gago‐Arias A, Pardo‐Montero J. Quantification of internal dosimetry in PET patients II: Individualized Monte Carlo-based dosimetry for [18F]fluorocholine PET. Med Phys 2021; 48:5448-5458. [PMID: 34260065 PMCID: PMC9291792 DOI: 10.1002/mp.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To obtain individualized internal doses with a Monte Carlo (MC) method in patients undergoing diagnostic [18F]FCH-PET studies and to compare such doses with the MIRD method calculations. METHODS A patient cohort of 17 males were imaged after intravenous administration of a mean [18F]FCH activity of 244.3 MBq. The resulting PET/CT images were processed in order to generate individualized input source and geometry files for dose computation with the MC tool GATE. The resulting dose estimates were studied and compared to the MIRD method with two different computational phantoms. Mass correction of the S-factors was applied when possible. Potential sources of uncertainty were closely examined: the effect of partial body images, urinary bladder emptying, and biokinetic modeling. RESULTS Large differences in doses between our methodology and the MIRD method were found, generally in the range ±25%, and up to ±120% for some cases. The mass scaling showed improvements, especially for non-walled and high-uptake tissues. Simulations of the urinary bladder emptying showed negligible effects on doses to other organs, with the exception of the prostate. Dosimetry based on partial PET/CT images (excluding the legs) resulted in an overestimation of mean doses to bone, skin, and remaining tissues, and minor differences in other organs/tissues. Estimated uncertainties associated with the biokinetics of FCH introduce variations of cumulated activities in the range of ±10% in the high-uptake organs. CONCLUSIONS The MC methodology allows for a higher degree of dosimetry individualization than the MIRD methodology, which in some cases leads to important differences in dose values. Dosimetry of FCH-PET based on a single partial PET study seems viable due to the particular biokinetics of FCH, even though some correction factors may need to be applied to estimate mean skin/bone doses.
Collapse
Affiliation(s)
- Sara Neira
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoSantiago de CompostelaSpain
| | - Jacobo Guiu‐Souto
- Department of Medical PhysicsCentro Oncolóxico de GaliciaA CoruñaSpain
| | - Paulino Pais
- Department of Nuclear MedicineCentro Oncolóxico de GaliciaA CoruñaSpain
| | | | - Carlos Fernández
- Department of Medical PhysicsCentro Oncolóxico de GaliciaA CoruñaSpain
| | - Virginia Pubul
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
| | - Álvaro Ruibal
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de SantiagoSantiago de CompostelaSpain
- Molecular Imaging GroupDepartment of RadiologyFaculty of MedicineUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
- Fundación TejerinaMadridSpain
| | - Miguel Pombar
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de SantiagoSantiago de CompostelaSpain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
| | - Araceli Gago‐Arias
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoSantiago de CompostelaSpain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
- Institute of PhysicsPontificia Universidad Católica de ChileSantiagoChile
| | - Juan Pardo‐Montero
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoSantiago de CompostelaSpain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
5
|
Dotinga M, Vriens D, van Velden F, Heijmen L, Nagarajah J, Hicks R, Kapiteijn E, de Geus-Oei LF. Managing radioiodine refractory thyroid cancer: the role of dosimetry and redifferentiation on subsequent I-131 therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 64:250-264. [PMID: 32744039 DOI: 10.23736/s1824-4785.20.03264-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poor responses to iodine-131 (I-131) therapy can relate to either low iodine uptake and retention in thyroid cancer cells or to increased radioresistance. Both mechanisms are currently termed radioactive iodine (RAI)-refractory (RAI-R) thyroid cancer but the first reflects unsuitability for I-131 therapy that can be evaluated in advance of treatment, whereas the other can only be identified post hoc. Management of both represents a considerable challenge in clinical practice as failure of I-131 therapy, the most effective treatment of metastatic thyroid cancer, is associated with a poor overall prognosis. The development of targeted therapies has shown substantial promise in the treatment of RAI-R thyroid cancer in progressive patients. Recent studies show that selective tyrosine kinase inhibitors (TKIs) targeting B-type rapidly accelerated fibrosarcoma kinase (BRAF) and mitogen-activated protein kinase (MEK) can be used as redifferentiation agents to re-induce RAI uptake, thereby (re)enabling I-131 therapy. The use of dosimetry prior- and post-TKI treatment can assist in quantifying RAI uptake and improve identification of patients that will benefit from I-131 therapy. It also potentially offers the prospect of calculating individualized therapeutic administered activities to enhance efficacy and limit toxicity. In this review, we present an overview of the regulation of RAI uptake and clinically investigated redifferentiation agents, both reimbursed and in experimental setting, that induce renewed RAI uptake. We describe the role of dosimetry in redifferentiation and subsequent I-131 therapy in RAI-R thyroid cancer, explain different dosimetry approaches and discuss limitations and considerations in the field.
Collapse
Affiliation(s)
- Maaike Dotinga
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands -
| | - Dennis Vriens
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Heijmen
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Rodney Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| |
Collapse
|
6
|
Neira S, Guiu‐Souto J, Díaz‐Botana P, Pais P, Fernández C, Pubul V, Ruibal Á, Candela‐Juan C, Gago‐Arias A, Pombar M, Pardo‐Montero J. Quantification of internal dosimetry in PET patients: individualized Monte Carlo vs generic phantom-based calculations. Med Phys 2020; 47:4574-4588. [PMID: 32569389 PMCID: PMC7586975 DOI: 10.1002/mp.14344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The purpose of this work is to calculate individualized dose distributions in patients undergoing 18 F-FDG PET/CT studies through a methodology based on full Monte Carlo (MC) simulations and PET/CT patient images, and to compare such values with those obtained by employing nonindividualized phantom-based methods. METHODS We developed a MC-based methodology for individualized internal dose calculations, which relies on CT images (for organ segmentation and dose deposition), PET images (for organ segmentation and distributions of activities), and a biokinetic model (which works with information provided by PET and CT images) to obtain cumulated activities. The software vGATE version 8.1. was employed to carry out the Monte Carlo calculations. We also calculated deposited doses with nonindividualized phantom-based methods (Cristy-Eckerman, Stabin, and ICRP-133). RESULTS Median MC-calculated dose/activity values are within 0.01-0.03 mGy/MBq for most organs, with higher doses delivered especially to the bladder wall, major vessels, and brain (medians of 0.058, 0.060, 0.066 mGy/MBq, respectively). Comparison with values obtained with nonindividualized phantom-based methods has shown important differences in many cases (ranging from -80% to + 260%). These differences are significant (p < 0.05) for several organs/tissues, namely, remaining tissues, adrenals, bladder wall, bones, upper large intestine, heart, pancreas, skin, and stomach wall. CONCLUSIONS The methodology presented in this work is a viable and useful method to calculate internal dose distributions in patients undergoing medical procedures involving radiopharmaceuticals, individually, with higher accuracy than phantom-based methods, fulfilling the guidelines provided by the European Council directive 2013/59/Euratom.
Collapse
Affiliation(s)
- Sara Neira
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
| | - Jacobo Guiu‐Souto
- Department of Medical PhysicsCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Pablo Díaz‐Botana
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Galician Supercomputation Center (CESGA)Avenida de Vigo s/nSantiago de Compostela15705Spain
| | - Paulino Pais
- Department of Nuclear MedicineCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Carlos Fernández
- Department of Medical PhysicsCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Virginia Pubul
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaTravesía Choupana s/nSantiago de Compostela15706Spain
| | - Álvaro Ruibal
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaTravesía Choupana s/nSantiago de Compostela15706Spain
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de Santiago, Travesía Choupana s/nSantiago de Compostela15706Spain
- Molecular Imaging GroupDepartment of RadiologyFaculty of MedicineUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
- Fundación TejerinaC/ José Abascal 40Madrid28003Spain
| | - Cristian Candela‐Juan
- Centro Nacional de DosimetríaInstituto Nacional de Gestión SanitariaAv. Campanar 21Valencia46009Spain
| | - Araceli Gago‐Arias
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile
| | - Miguel Pombar
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de Santiago, Travesía Choupana s/nSantiago de Compostela15706Spain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaTravesía da Choupana s/nSantiago de Compostela15706Spain
| | - Juan Pardo‐Montero
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaTravesía da Choupana s/nSantiago de Compostela15706Spain
| |
Collapse
|
7
|
Mora-Ramirez E, Santoro L, Cassol E, Ocampo-Ramos JC, Clayton N, Kayal G, Chouaf S, Trauchessec D, Pouget JP, Kotzki PO, Deshayes E, Bardiès M. Comparison of commercial dosimetric software platforms in patients treated with 177 Lu-DOTATATE for peptide receptor radionuclide therapy. Med Phys 2020; 47:4602-4615. [PMID: 32632928 PMCID: PMC7589428 DOI: 10.1002/mp.14375] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with 177Lu‐DOTATATE (LUTATHERA®). Methods The dosimetric analysis was performed on two patients during two cycles of PRRT with 177Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection. Reconstructed images were generated using Dosimetry Toolkit® (DTK) from Xeleris™ and HybridRecon‐Oncology version_1.3_Dicom (HROD) from HERMES. Reconstructed images using DTK were analyzed using the same software to calculate time‐integrated activity coefficients (TIAC), and mean absorbed doses were estimated using OLINDA/EXM V1.0 with mass correction. Reconstructed images from HROD were uploaded into PLANET® OncoDose from DOSIsoft, STRATOS from Phillips, Hybrid Dosimetry Module™ from HERMES, and SurePlan™ MRT from MIM. Organ masses, TIACs, and mean absorbed doses were calculated from each application using their recommendations. Results The majority of organ mass estimates varied by <9.5% between all platforms. The highest variability for TIAC results between platforms was seen for the kidneys (28.2%) for the two patients and the two treatment cycles. Relative standard deviations in mean absorbed doses were slightly higher compared with those observed for TIAC, but remained of the same order of magnitude between all platforms. Conclusions When applying a similar processing approach, results obtained were of the same order of magnitude regardless of the platforms used. However, the comparison of the performances of currently available platforms is still difficult as they do not all address the same parts of the dosimetric analysis workflow. In addition, the way in which data are handled in each part of the chain from data acquisition to absorbed doses may be different, which complicates the comparison exercise. Therefore, the dissemination of commercial solutions for absorbed dose calculation calls for the development of tools and standards allowing for the comparison of the performances between dosimetric software platforms.
Collapse
Affiliation(s)
- Erick Mora-Ramirez
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Escuela de Física - CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Lore Santoro
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Emmanuelle Cassol
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Département de Médecine Nucléaire, Hôpitaux Toulouse, Toulouse, F-31059, France.,Faculté de Médecine Rangueil, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Juan C Ocampo-Ramos
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Naomi Clayton
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Gunjan Kayal
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol, BE-2400, Belgium
| | - Soufiane Chouaf
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Dorian Trauchessec
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Pierre-Olivier Kotzki
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Emmanuel Deshayes
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| |
Collapse
|
8
|
Villoing D, Cuthbert TA, Kitahara CM, Lee C. NCINM: organ dose calculator for patients undergoing nuclear medicine procedures. Biomed Phys Eng Express 2020; 6:055010. [DOI: 10.1088/2057-1976/aba41e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Bordes J, Incerti S, Mora-Ramirez E, Tranel J, Rossi C, Bezombes C, Bordenave J, Bardiès M, Brown R, Bordage MC. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy. Med Phys 2020; 47:5222-5234. [PMID: 32623743 DOI: 10.1002/mp.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Small-scale dosimetry studies generally consider an artificial environment where the tumors are spherical and the radionuclides are homogeneously biodistributed. However, tumor shapes are irregular and radiopharmaceutical biodistributions are heterogeneous, impacting the energy deposition in targeted radionuclide therapy. To bring realism, we developed a dosimetric methodology based on a three-dimensional in vitro model of follicular lymphoma incubated with rituximab, an anti-CD20 monoclonal antibody used in the treatment of non-Hodgkin lymphomas, which might be combined with a radionuclide. The effects of the realistic geometry and biodistribution on the absorbed dose were highlighted by comparison with literature data. Additionally, to illustrate the possibilities of this methodology, the effect of different radionuclides on the absorbed dose distribution delivered to the in vitro tumor were compared. METHODS The starting point was a model named multicellular aggregates of lymphoma cells (MALC). Three MALCs of different dimensions and their rituximab biodistribution were considered. Geometry, antibody location and concentration were extracted from selective plane illumination microscopy. Assuming antibody radiolabeling with Auger electron (125 I and 111 In) and β- particle emitters (177 Lu, 131 I and 90 Y), we simulated energy deposition in MALCs using two Monte Carlo codes: Geant4-DNA with "CPA100" physics models for Auger electron emitters and Geant4 with "Livermore" physics models for β- particle emitters. RESULTS MALCs had ellipsoid-like shapes with major radii, r, of ~0.25, ~0.5 and ~1.3 mm. Rituximab was concentrated in the periphery of the MALCs. The absorbed doses delivered by 177 Lu, 131 I and 90 Y in MALCs were compared with literature data for spheres with two types of homogeneous biodistributions (on the surface or throughout the volume). Compared to the MALCs, the mean absorbed doses delivered in spheres with surface biodistributions were between 18% and 38% lower, while with volume biodistribution they were between 15% and 29% higher. Regarding the radionuclides comparison, the relationship between MALC dimensions, rituximab biodistribution and energy released per decay impacted the absorbed doses. Despite releasing less energy, 125 I delivered a greater absorbed dose per decay than 111 In in the r ~ 0.25 mm MALC (6.78·10-2 vs 6.26·10-2 µGy·Bq-1 ·s-1 ). Similarly, the absorbed doses per decay in the r ~ 0.5 mm MALC for 177 Lu (2.41·10-2 µGy·Bq-1 ·s-1 ) and 131 I (2.46·10-2 µGy·Bq-1 ·s-1 ) are higher than for 90 Y (1.98·10-2 µGy·Bq-1 ·s-1 ). Furthermore, radionuclides releasing more energy per decay delivered absorbed dose more uniformly through the MALCs. Finally, when considering the radiopharmaceutical effective half-life, due to the biological half-life of rituximab being best matched by the physical half-life of 177 Lu and 131 I compared to 90 Y, the first two radionuclides delivered higher absorbed doses. CONCLUSION In the simulated configurations, β- emitters delivered higher and more uniform absorbed dose than Auger electron emitters. When considering radiopharmaceutical half-lives, 177 Lu and 131 I delivered absorbed doses higher than 90 Y. In view of real irradiation of MALCs, such a work may be useful to select suited radionuclides and to help explain the biological effects.
Collapse
Affiliation(s)
- Julien Bordes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Sébastien Incerti
- Université de Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Erick Mora-Ramirez
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Escuela de Física, CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Jonathan Tranel
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cédric Rossi
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, 21000, France
| | - Christine Bezombes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Julie Bordenave
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Manuel Bardiès
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Richard Brown
- Institute of Nuclear Medicine, University College London, 235 Euston Road, London, NW1 2BU, UK
| | - Marie-Claude Bordage
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| |
Collapse
|
10
|
Tiwari A, Gravesa SA, Sunderland J. The Impact of Tissue Type and Density on Dose Point Kernels for Patient-Specific Voxel-Wise Dosimetry: A Monte Carlo Investigation. Radiat Res 2020; 193:531-542. [PMID: 32315249 DOI: 10.1667/rr15563.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/11/2020] [Indexed: 11/03/2022]
Abstract
We report the generation of dose point kernels for clinically-relevant radionuclide beta decays and monoenergetic electrons in various tissues to understand the impact of tissue type on dose point kernels. Currently available voxel-wise dosimetry approaches using dose point kernels ignore tissue composition and density heterogeneities. Therefore, the study on the impact of tissue type on dose point kernels is warranted. Simulations were performed using the GATE Monte Carlo toolkit, which encapsulates GEANT4 libraries. Dose point kernels were simulated in phantoms of water, compact bone, lung, adipose tissue, blood and red marrow for radionuclides 90Y, 188Re, 32P, 89Sr, 186Re, 153Sm and 177Lu and monoenergetic electrons (0.015-10 MeV). All simulations were performed by assuming an isotropic point source of electrons at the center of a homogeneous spherical phantom. Tissue-specific differences between kernels were investigated by normalizing kernels for effective pathlength. Transport of 20 million particles was found to provide sufficient statistical precision in all simulated kernels. The simulated dose point kernels demonstrate excellent agreement with other Monte Carlo packages. Deviation from kernels reported in the literature did not exceed a 10% global difference, which is consistent with the variability among published results. There are no significant differences between the dose point kernel in water and kernels in other tissues that have been scaled to account for density; however, tissue density predictably demonstrated itself to be a significant variable in dose point kernel distribution.
Collapse
Affiliation(s)
- Ashok Tiwari
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.,Department of Physics, University of Iowa, Iowa City, Iowa 52242
| | - Stephen A Gravesa
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
| | - John Sunderland
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.,Department of Physics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
11
|
Frezza A, Joachim-Paquet C, Chauvin M, Després P. Validation of irtGPUMCD, a GPU-based Monte Carlo internal dosimetry framework for radionuclide therapy. Phys Med 2020; 73:95-104. [PMID: 32334403 DOI: 10.1016/j.ejmp.2020.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulations are highly desirable for dose treatment planning and evaluation in radiation oncology. This is true also in emerging nuclear medicine applications such as internal radiotherapy with radionuclides. The purpose of this study is the validation of irtGPUMCD, a GPU-based MC code for dose calculations in internal radiotherapy. METHODS The female and male phantoms of the International Commission on Radiological Protection (ICRP 110) were used as benchmarking geometries for this study focused on 177Lu and including 99mTc and 131I. Dose calculations were also conducted for a real patient. For phantoms, twelve anatomical structures were considered as target/source organs. The S-values were evaluated with irtGPUMCD simulations (108 photons), with gamma branching ratios of ICRP 107 publication. The 177Lu electrons S-values were calculated for source organs only, based on local deposition of dose in irtGPUMCD. The S-value relative difference between irtGPUMCD and IDAC-DOSE were evaluated for all targets/sources considered. A DVHs comparison with GATE was conducted. An exponential track length estimator was introduced in irtGPUMCD to increase computational efficiency. RESULTS The relative S-value differences between irtGPUMCD and IDAC-DOSE were <5% while this comparison with GATE was <1%. The DVHs dosimetric indices comparison between GATE and irtGPUMCD for the patient led to an excellent agreement (<2%). The time required for the simulation of 108 photons was 1.5 min for the female phantom, and one minute for the real patient (<1% uncertainty). These results are promising and let envision the use of irtGPUMCD for internal dosimetry in clinical applications.
Collapse
Affiliation(s)
- Andrea Frezza
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Charles Joachim-Paquet
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Maxime Chauvin
- CRCT, UMR 1037, Inserm, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Philippe Després
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, QC G1V 0A6, Canada; Department of Radiation Oncology and Research Center of CHU de Québec - Université Laval, Quebec City, QC G1R 2J6, Canada.
| |
Collapse
|
12
|
Papadimitroulas P, Balomenos A, Kopsinis Y, Loudos G, Alexakos C, Karnabatidis D, Kagadis GC, Kostou T, Chatzipapas K, Visvikis D, Mountris KA, Jaouen V, Katsanos K, Diamantopoulos A, Apostolopoulos D. A Review on Personalized Pediatric Dosimetry Applications Using Advanced Computational Tools. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2876562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Besemer AE, Grudzinski JJ, Weichert JP, Hall LT, Bednarz BP. Pretreatment CLR 124 Positron Emission Tomography Accurately Predicts CLR 131 Three-Dimensional Dosimetry in a Triple-Negative Breast Cancer Patient. Cancer Biother Radiopharm 2018; 34:13-23. [PMID: 30351218 DOI: 10.1089/cbr.2018.2568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION CLR1404 is a theranostic molecular agent that can be radiolabeled with 124I (CLR 124) for positron emission tomography (PET) imaging, or 131I (CLR 131) for single-photon emission computed tomography (SPECT) imaging and targeted radionuclide therapy. This pilot study evaluated a pretreatment dosimetry methodology in a triple-negative breast cancer patient who was uniquely enrolled in both a CLR 124 PET imaging clinical trial and a CLR 131 therapeutic dose escalation clinical trial. MATERIALS AND METHODS Three-dimensional PET/CT images were acquired at 1, 3, 24, 48, and 120 h postinjection of 178 MBq CLR 124. One month later, pretherapy 2D whole-body planar images were acquired at 0.25, 5, 24, 48, and 144 h postinjection of 370 MBq CLR 131. Following the therapeutic administration of 1990 MBq CLR 131, 3D SPECT/CT images were acquired at 74, 147, 334, and 505 h postinjection. The therapeutic CLR 131 voxel-level absorbed dose was estimated from PET (RAPID PET) and SPECT (RAPID SPECT) images using a Geant4-based Monte Carlo dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry), and region of interest (ROI) mean doses were also estimated using the OLINDA/EXM software based on PET (OLINDA PET), SPECT (OLINDA SPECT), and planar (OLINDA planar) images. RESULTS The RAPID PET and OLINDA PET tracer-predicted ROI mean doses correlated well (m ≥ 0.631, R2 ≥ 0.694, p ≤ 0.01) with both the RAPID SPECT and OLINDA SPECT therapeutic mean doses. The 2D planar images did not have any significant correlations. The ROI mean doses differed by -4% to -43% between RAPID and OLINDA/EXM, and by -19% to 29% between PET and SPECT. The 3D dose distributions and dose volume histograms calculated with RAPID were similar for the PET/CT and SPECT/CT. CONCLUSIONS This pilot study demonstrated that CLR 124 pretreatment PET images can be used to predict CLR 131 3D therapeutic dosimetry better than CLR 131 2D planar images. In addition, unlike OLINDA/EXM, Monte Carlo dosimetry methods were capable of accurately predicting dose heterogeneity, which is important for predicting dose-response relationships and clinical outcomes.
Collapse
Affiliation(s)
- Abigail E Besemer
- 1 Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,2 Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin.,3 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joseph J Grudzinski
- 1 Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jamey P Weichert
- 1 Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,4 Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,5 Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lance T Hall
- 4 Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,5 Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bryan P Bednarz
- 1 Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
14
|
Wang H, Sun X, Wu T, Li C, Chen Z, Liao M, Li M, Yan W, Huang H, Yang J, Tan Z, Hui L, Liu Y, Pan H, Qu Y, Chen Z, Tan L, Yu L, Shi H, Huo L, Zhang Y, Tang X, Zhang S, Liu C. Deformable torso phantoms of Chinese adults for personalized anatomy modelling. J Anat 2018; 233:121-134. [PMID: 29663370 PMCID: PMC5987821 DOI: 10.1111/joa.12815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 11/26/2022] Open
Abstract
In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RCvlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Xiaobang Sun
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
- Department of Information TechnologyUniversity of JyväskyläJyväskyläFinland
| | - Tongning Wu
- China Academy of Industry and Communications TechnologyBeijingChina
| | - Congsheng Li
- China Academy of Industry and Communications TechnologyBeijingChina
| | - Zhonghua Chen
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Meiying Liao
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Mengci Li
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Wen Yan
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Hui Huang
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Jia Yang
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Ziyu Tan
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Libo Hui
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Yue Liu
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Hang Pan
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Yue Qu
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Zhaofeng Chen
- Department of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianLiaoningChina
| | - Liwen Tan
- Institute of Digital MedicineThird Military Medical UniversityChongqingChina
| | - Lijuan Yu
- The Affiliated Cancer Hospital of Hainan Medical CollegeHaikouHainanChina
| | - Hongcheng Shi
- Department of Nuclear MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Li Huo
- Department of Nuclear MedicinePeking Union Medical College HospitalBeijingChina
| | - Yanjun Zhang
- Department of Nuclear Medicinethe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Xin Tang
- Trauma Department of Orthopaedicsthe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Shaoxiang Zhang
- Institute of Digital MedicineThird Military Medical UniversityChongqingChina
| | - Changjian Liu
- Trauma Department of Orthopaedicsthe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
15
|
Besemer AE, Yang YM, Grudzinski JJ, Hall LT, Bednarz BP. Development and Validation of RAPID: A Patient-Specific Monte Carlo Three-Dimensional Internal Dosimetry Platform. Cancer Biother Radiopharm 2018; 33:155-165. [PMID: 29694246 DOI: 10.1089/cbr.2018.2451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work describes the development and validation of a patient-specific Monte Carlo internal dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry). RAPID utilizes serial PET/CT or SPECT/CT images to calculate voxelized three-dimensional (3D) internal dose distributions with the Monte Carlo code Geant4. RAPID's dosimetry calculations were benchmarked against previously published S-values and specific absorbed fractions (SAFs) calculated for monoenergetic photon and electron sources within the Zubal phantom and for S-values calculated for a variety of radionuclides within spherical tumor phantoms with sizes ranging from 1 to 1000 g. The majority of the S-values and SAFs calculated in the Zubal Phantom were within 5% of the previously published values with the exception of a few 10 keV photon SAFs that agreed within 10%, and one value within 16%. The S-values calculated in the spherical tumor phantoms agreed within 2% for 177Lu, 131I, 125I, 18F, and 64Cu, within 3.5% for 211At and 213Bi, within 6.5% for 153Sm, 111In, 89Zr, and 223Ra, and within 9% for 90Y, 68Ga, and 124I. In conclusion, RAPID is capable of calculating accurate internal dosimetry at the voxel-level for a wide variety of radionuclides and could be a useful tool for calculating patient-specific 3D dose distributions.
Collapse
Affiliation(s)
- Abigail E Besemer
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin.,2 Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - You Ming Yang
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin.,3 Department of Radiation Oncology, University of California - Los Angeles , Los Angeles, California
| | - Joseph J Grudzinski
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin
| | - Lance T Hall
- 4 Department of Radiology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin.,5 Carbone Cancer Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Bryan P Bednarz
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
16
|
Bagheri M, Parach AA, Razavi-Ratki SK, Nafisi-Moghadam R, Jelodari MA. PATIENT-SPECIFIC DOSIMETRY FOR PEDIATRIC IMAGING OF 99mTc-DIMERCAPTOSUCCINIC ACID WITH GATE MONTE CARLO CODE. RADIATION PROTECTION DOSIMETRY 2018; 178:213-222. [PMID: 28981712 DOI: 10.1093/rpd/ncx101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In this study, radiation absorbed dose of 99mTc-dimercaptosuccinic acid (DMSA) in critical organs was calculated using Monte Carlo simulation. Ten child patients with genitourinary abnormalities were imaged using a series of planar, SPECT and MRI, after injection with 99mTc-DMSA. Patient-specific organ segmentation was performed on MRI and used as input in GATE. Organs with substantial uptake included kidneys, bladder and liver. The mean organ absorbed dose coefficients (mGy/MBq) were 0.063, 0.058, 0.018, 0.016, 0.013 and 0.010 for the right kidney, left kidney, bones, urinary bladder wall, liver and gonads, respectively. The absorbed dose coefficients in the remainder of the body was 0.012 mGy/MBq. The authors implemented an image-based Monte Carlo method for patient-specific 3D absorbed dose calculation. This study also demonstrates the possibility to obtain patient-specific attenuation map from MRI to be used for the simulations of radiation transport and energy deposition in phantom using Monte Carlo methods.
Collapse
Affiliation(s)
- Mahmoud Bagheri
- Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Parach
- Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seid Kazem Razavi-Ratki
- Department of Radiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Nafisi-Moghadam
- Department of Radiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
17
|
Lee MS, Kim JH, Paeng JC, Kang KW, Jeong JM, Lee DS, Lee JS. Whole-Body Voxel-Based Personalized Dosimetry: The Multiple Voxel S-Value Approach for Heterogeneous Media with Nonuniform Activity Distributions. J Nucl Med 2017; 59:1133-1139. [DOI: 10.2967/jnumed.117.201095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
|
18
|
Papadimitroulas P. Dosimetry applications in GATE Monte Carlo toolkit. Phys Med 2017; 41:136-140. [DOI: 10.1016/j.ejmp.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022] Open
|
19
|
Villoing D, Marcatili S, Garcia MP, Bardiès M. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys Med Biol 2017; 62:1885-1904. [DOI: 10.1088/1361-6560/62/5/1885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Braad PEN, Andersen T, Hansen SB, Høilund-Carlsen PF. Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry. Med Phys 2016; 43:6507. [DOI: 10.1118/1.4967267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Momennezhad M, Nasseri S, Zakavi SR, Parach AA, Ghorbani M, Asl RG. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging. World J Nucl Med 2016; 15:114-23. [PMID: 27134562 PMCID: PMC4809152 DOI: 10.4103/1450-1147.174700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of 99mTc-hydrazinonicotinamide (hynic)-Tyr3-octreotide as a SPECT radiotracer. 99mTc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of 99mhynic-Tyr3-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results.
Collapse
Affiliation(s)
- Mehdi Momennezhad
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Nasseri
- Department of Medical Physics, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Rasoul Zakavi
- Department of Nuclear Medicine, Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Parach
- Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Ghorbani
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| | - Ruhollah Ghahraman Asl
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Garcia MP, Villoing D, McKay E, Ferrer L, Cremonesi M, Botta F, Ferrari M, Bardiès M. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry. Med Phys 2015; 42:6885-94. [DOI: 10.1118/1.4934828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|