1
|
Development and verification of a novel system for computed tomography scanner model construction in Monte Carlo simulations. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Muramatsu S. [2. Topics in Bow-tie Filter]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:75-80. [PMID: 33473082 DOI: 10.6009/jjrt.2021_jsrt_77.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Yamauchi-Kawaura C, Fujii K, Yamauchi M, Yamamoto S, Kozuka M, Ohzawa N, Suga N, Ito N. SHAPE ESTIMATION OF BOWTIE FILTERS BASED ON THE LUMINESCENCE FROM POLYETHYLENE TEREPHTHALATE RESIN BY X-RAY IRRADIATION. RADIATION PROTECTION DOSIMETRY 2019; 185:432-439. [PMID: 30916354 DOI: 10.1093/rpd/ncz031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
In this study, we devised a novel method estimating the bowtie filter shapes by imaging luminescence from a polyethylene terephthalate (PET) resin with X-ray irradiation in a computed tomography (CT) scanner. The luminescence distribution of the PET resin corresponding to the thickness of bowtie filter was imaged using a charge-coupled device camera. On the assumption that the material of bowtie filter is aluminium (Al), the shape of bowtie filters was estimated from the correlation between Al attenuation curves and the angular-dependent luminance attenuation profiles according to the thickness of bowtie filters. Dose simulations based on the estimated bowtie filter shapes were performed using head and body PMMA phantoms with 16 and 32 cm in diameter. The simulated values of head and body weighted CT dose index (CTDIw) based on bowtie filter shape by the luminescence imaging method agreed within ~9% with the measured values by a dosemeter.
Collapse
Affiliation(s)
- C Yamauchi-Kawaura
- Department of Radiological Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - K Fujii
- Department of Radiological Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - M Yamauchi
- Division of Radiology, Aichi Medical University Hospital, Nagakute, Aichi 480-1195, Japan
| | - S Yamamoto
- Department of Radiological Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - M Kozuka
- Department of Radiological Technology, School of Health Sciences, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - N Ohzawa
- Department of Radiological Technology, School of Health Sciences, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - N Suga
- Department of Radiological Technology, School of Health Sciences, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - N Ito
- Department of Radiological Technology, School of Health Sciences, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| |
Collapse
|
4
|
Rosendahl S, Büermann L, Borowski M, Kortesniemi M, Sundell VM, Kosunen A, Siiskonen T. CT beam dosimetric characterization procedure for personalized dosimetry. Phys Med Biol 2019; 64:075009. [PMID: 30856614 DOI: 10.1088/1361-6560/ab0e97] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Personalized dosimetry in computed tomography (CT) can be realized by a full Monte Carlo (MC) simulation of the scan procedure. Essential input data needed for the simulation are appropriate CT x-ray source models and a model of the patient's body which is based on the CT image. The purpose of this work is to develop comprehensive procedures for the determination of CT x-ray source models and their verification by comparison of calculated and measured dose distributions in physical phantoms. Mobile equipment together with customized software was developed and used for non-invasive determination of equivalent source models of CT scanners under clinical conditions. Standard and physical anthropomorphic CT dose phantoms equipped with real-time CT dose probes at five representative positions were scanned. The accumulated dose was measured during the scan at the five positions. ImpactMC, an MC-based CT dose software program, was used to simulate the scan. The necessary inputs were obtained from the scan parameters, from the equivalent source models and from the material-segmented CT images of the phantoms. 3D dose distributions in the phantoms were simulated and the dose values calculated at the five positions inside the phantom were compared to measured dose values. Initial results were obtained by means of a General Electric Optima CT 660 and a Toshiba (Canon) Aquilion ONE. In general, the measured and calculated dose values were within relative uncertainties that had been estimated to be less than 10%. The procedures developed were found to be viable and rapid. The procedures are applicable to any scanner type under clinical conditions without making use of the service mode with stationary x-ray tube position. Results show that the procedures are well suited for determining and verifying the equivalent source models needed for personalized CT dosimetry based on post-scan MC calculations.
Collapse
Affiliation(s)
- S Rosendahl
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Hassan AI, Skalej M, Schlattl H, Hoeschen C. Determination and verification of the x-ray spectrum of a CT scanner. J Med Imaging (Bellingham) 2018; 5:013506. [PMID: 29430476 DOI: 10.1117/1.jmi.5.1.013506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/10/2018] [Indexed: 11/14/2022] Open
Abstract
The accuracy of Monte Carlo (MC) simulations in estimating the computed tomography radiation dose is highly dependent on the proprietary x-ray source information. To address this, this study develops a method to precisely estimate the x-ray spectrum and bowtie (BT) filter thickness of the x-ray source based on physical measurements and calculations. The static x-ray source of the CT localizer radiograph was assessed to measure the total filtration at the isocenter for the x-ray spectrum characterization and the BT profile (air-kerma values as a function of fan angle). With these values, the utilized BT filter in the localizer radiograph was assessed by integrating the measured air kerma in a full 360-deg cycle. The consistency observed between the integrated BT filter profiles and the directly measured profiles pointed to the similarity in the utilized BT filter in terms of thickness and material between the static and rotating x-ray geometries. Subsequently, the measured air kerma was used to calculate the BT filter thickness and was verified using MC simulations by comparing the calculated and measured air-kerma values, where a very good agreement was observed. This would allow a more accurate computed tomography simulation and facilitate the estimation of the dose delivered to the patients.
Collapse
Affiliation(s)
- Ahmad Ibrahim Hassan
- Otto von Guericke Universität Magdeburg, Universitätsklinikum Magdeburg A.ö.R., Institut für Neuroradiologie, Magdeburg, Deutschland, Germany.,Otto von Guericke Universität, Institut für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik Universitätsplatz, Magdeburg, Deutschland, Germany
| | - Martin Skalej
- Otto von Guericke Universität Magdeburg, Universitätsklinikum Magdeburg A.ö.R., Institut für Neuroradiologie, Magdeburg, Deutschland, Germany
| | - Helmut Schlattl
- Institute of Radiation Protection, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Deutschland, Germany
| | - Christoph Hoeschen
- Otto von Guericke Universität, Institut für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik Universitätsplatz, Magdeburg, Deutschland, Germany
| |
Collapse
|
6
|
Yang K, Li X, George Xu X, Liu B. Direct and fast measurement of CT beam filter profiles with simultaneous geometrical calibration. Med Phys 2017; 44:57-70. [PMID: 28102951 DOI: 10.1002/mp.12024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To accurately measure the beam filter profiles from a variety of CT scanner models and to provide reference data for Monte Carlo simulations of CT scanners. METHODS This study proposed a new method to measure CT beam filter profiles using a linear-array x-ray detector (X-Scan 0.8f3-512; Detection Technology Inc., Espoo, Finland) under gantry rotation mode. A robust geometrical calibration approach was developed to determine key geometrical parameters by considering the x-ray focal spot location relative to the linear-array detector and the gantry's angular increment at each acquisition point. CT beam intensity profiles were synthesized from continuously measured data during a 10° gantry rotation range with calibrated detector response and system geometry information. Relative transmission profiles of nineteen sets of beam filters were then derived for nine different CT scanner models from three different manufacturers. Equivalent aluminum thickness profiles of these beam filters were determined by analytical calculation using the Spektr Matlab software package to match the measured transmission profiles. Three experiments were performed to validate the accuracy of the geometrical calibration, detector response modeling, and the derived equivalent aluminum thickness profiles. RESULTS The beam intensity profiles measured from gantry rotation mode showed very good agreement with those measured with gantry stationary mode, with a maximal difference of 3%. The equivalent aluminum thickness determined by this proposed method agreed well with what was measured by an ion chamber, with a mean difference of 0.4%. The determined HVL profiles matched well with data from a previous study (max difference of 4.7%). CONCLUSIONS An accurate and robust method to directly measure profiles from a broad list of beam filters and CT scanner models was developed, implemented, and validated. Useful reference data was provided for future research on CT system modeling.
Collapse
Affiliation(s)
- Kai Yang
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xinhua Li
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Bob Liu
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
7
|
Ming X, Feng Y, Liu R, Yang C, Zhou L, Zhai H, Deng J. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans. Phys Med Biol 2017; 62:1759-1776. [PMID: 28079526 DOI: 10.1088/1361-6560/aa5911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
Collapse
Affiliation(s)
- Xin Ming
- Department of Biomedical Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Technical Note: Procedure for the calibration and validation of kilo-voltage cone-beam CT models. Med Phys 2016; 43:5199. [DOI: 10.1118/1.4961400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Li X, Shi JQ, Zhang D, Singh S, Padole A, Otrakji A, Kalra MK, Xu XG, Liu B. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations. Med Phys 2016; 42:6274-82. [PMID: 26520720 DOI: 10.1118/1.4932364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. METHODS A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o'clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. RESULTS Absolute attenuation was measured with the body bow-tie scanned at 80-140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. CONCLUSIONS The described method allows fast and accurate bow-tie filter characterization.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jim Q Shi
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Da Zhang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Sarabjeet Singh
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Atul Padole
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Alexi Otrakji
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|