1
|
Wehrse E, Klein L, Rotkopf LT, Stiller W, Finke M, Echner G, Glowa C, Heinze S, Ziener CH, Schlemmer HP, Kachelrieß M, Sawall S. Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man. Z Med Phys 2022:S0939-3889(22)00066-6. [PMID: 35868888 DOI: 10.1016/j.zemedi.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022]
Abstract
X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - L Klein
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - M Finke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - G Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - C Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
An in-silico method to predict and quantify the effect of gold nanoparticles in X-ray imaging. Phys Med 2021; 89:160-168. [PMID: 34380106 DOI: 10.1016/j.ejmp.2021.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Over the last few years studies are conducted, highlighting the feasibility of Gold Nanoparticles (GNPs) to be used in clinical CT imaging and as an efficient contrast agent for cancer research. After ensuring that GNPs formulations are appropriate for in vivo or clinical use, the next step is to determine the parameters for an X-ray system's optimal contrast for applications and to extract quantitative information. There is currently a gap and need to exploit new X-ray imaging protocols and processing algorithms, through specific models avoiding trial-and-error procedures and provide an imaging prognosis tool. Such a model can be used to confirm the accumulation of GNPs in target organs before radiotherapy treatments with a system easily available in hospitals, as low energy X-rays. METHODS In this study a complete, easy-to-use, simulation platform is designed and built, where simple parameters, as the X-ray's specifications and experimentally defined biodistributions of specific GNPs are imported. The induced contrast and images can be exported, and accurate quantification can be performed. This platform is based on the GATE Monte Carlo simulation toolkit, based on the GEANT4 toolkit and the MOBY phantom, a realistic 4D digital mouse. RESULTS We have validated this simulation platform to predict the contrast induction and minimum detectable concentration of GNPs on any given X-ray system. The study was applied to preclinical studies but is also expandable to clinical studies. CONCLUSIONS According to our knowledge, no other such validated simulation model currently exists, and this model could help radiology imaging with GNPs to be truly deployed.
Collapse
|
3
|
Silva CC, Berdeguez MB, Barboza T, Souza SA, Braz D, Silva AX, Sa LV. Preclinical radiation internal dosimetry in the development of new radiopharmaceuticals using GATE Monte Carlo simulation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Johnstone CD, Bazalova-Carter M. MicroCT imaging dose to mouse organs using a validated Monte Carlo model of the small animal radiation research platform (SARRP). Phys Med Biol 2018; 63:115012. [PMID: 29741161 DOI: 10.1088/1361-6560/aac335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The goal of this work was to establish imaging dose to mouse organs with a validated Monte Carlo (MC) model of the image-guided Small Animal Radiation Research Platform (SARRP) and to investigate the effect of scatter from the internal walls on animal therapy dose determination. A MC model of the SARRP was built in the BEAMnrc code and validated with a series of homogeneous and heterogeneous phantom measurements. A segmented microCT scan of a mouse was used in DOSXYZnrc to determine mouse organ microCT imaging doses to 15-35 g mice for the SARRP pancake (mouse lying on couch) and standard (mouse standing on couch) imaging geometries for 40-80 kVp tube voltages. Imaging dose for off-center positioning shifts and maintaining image noise across tube voltages were also calculated. Half-value layer (HVL) measurements for the 220 kVp therapy beam in the presence of the SARRP shielding cabinet were modeled in BEAMnrc and compared to the 100 cm source-to-detector distance (SDD) in the scatter free, narrow-beam geometry recommended by the American Association of Physicists in Medicine Task Group 61 (AAPM TG-61). For a 60 kVp, 0.8 mA, and 60 s scan protocol, maximum mean organ imaging doses to boney and non-boney structures were 10.5 cGy and 3.5 cGy, respectively, for an average size 20 g mouse. Current-exposure combinations above 323, 203, 147, 116, and 95 mAs for 40-80 kVp tube voltages, respectively, will increase body doses above 10 cGy. MicroCT mean body dose was 18% lower in pancake compared to standard imaging geometry. An 11% difference in measured HVL at a 50 cm SDD was found compared to MC simulated HVL for the AAPM TG-61 recommended scatter free geometry at a 100 cm SDD. This change in HVL resulted in a 0.5% change in absorbed dose to water calculations for the treatment beam.
Collapse
|
5
|
Meganck JA, Liu B. Dosimetry in Micro-computed Tomography: a Review of the Measurement Methods, Impacts, and Characterization of the Quantum GX Imaging System. Mol Imaging Biol 2018; 19:499-511. [PMID: 27957647 PMCID: PMC5498628 DOI: 10.1007/s11307-016-1026-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose X-ray micro-computed tomography (μCT) is a widely used imaging modality in preclinical research with applications in many areas including orthopedics, pulmonology, oncology, cardiology, and infectious disease. X-rays are a form of ionizing radiation and, therefore, can potentially induce damage and cause detrimental effects. Previous reviews have touched on these effects but have not comprehensively covered the possible implications on study results. Furthermore, interpreting data across these studies is difficult because there is no widely accepted dose characterization methodology for preclinical μCT. The purpose of this paper is to ensure in vivo μCT studies can be properly designed and the data can be appropriately interpreted. Procedures Studies from the scientific literature that investigate the biological effects of radiation doses relevant to μCT were reviewed. The different dose measurement methodologies used in the peer-reviewed literature were also reviewed. The CT dose index 100 (CTDI100) was then measured on the Quantum GX μCT instrument. A low contrast phantom, a hydroxyapatite phantom, and a mouse were also imaged to provide examples of how the dose can affect image quality. Results Data in the scientific literature indicate that scenarios exist where radiation doses used in μCT imaging are high enough to potentially bias experimental results. The significance of this effect may relate to the study outcome and tissue being imaged. CTDI100 is a reasonable metric to use for dose characterization in μCT. Dose rates in the Quantum GX vary based on the amount of material in the beam path and are a function of X-ray tube voltage. The CTDI100 in air for a Quantum GX can be as low as 5.1 mGy for a 50 kVp scan and 9.9 mGy for a 90 kVp scan. This dose is low enough to visualize bone both in a mouse image and in a hydroxyapatite phantom, but applications requiring higher resolution in a mouse or less noise in a low-contrast phantom benefit from longer scan times with increased dose. Conclusions Dose management should be considered when designing μCT studies. Dose rates in the Quantum GX are compatible with longitudinal μCT imaging.
Collapse
Affiliation(s)
- Jeffrey A Meganck
- Research and Development, Life Sciences Technology, PerkinElmer, 68 Elm Street, Hopkinton, MA, 01748, USA.
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
van Eeden D, du Plessis F. EGS_cbct: Simulation of a fan beam CT and RMI phantom for measured HU verification. Phys Med 2016; 32:1375-1380. [PMID: 27682511 DOI: 10.1016/j.ejmp.2016.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION A mathematical 3D model of an existing computed tomography (CT) scanner was created and used in the EGSnrc-based BEAMnrc and egs_cbct Monte Carlo codes. Simulated transmission dose profiles of a RMI-465 phantom were analysed to verify Hounsfield numbers against measured data obtained from the CT scanner. METHODS AND MATERIALS The modelled CT unit is based on the design of a Toshiba Aquilion 16 LB CT scanner. As a first step, BEAMnrc simulated the X-ray tube, filters, and secondary collimation to obtain phase space data of the X-ray beam. A bowtie filter was included to create a more uniform beam intensity and to remove the beam hardening effects. In a second step the Interactive Data Language (IDL) code was used to build an EGSPHANT file that contained the RMI phantom which was used in egs_cbct simulations. After simulation a series of profiles were sampled from the detector model and the Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct transversal images. The results were tested against measured data obtained from CT scans. RESULTS The egs_cbct code can be used for the simulation of a fan beam CT unit. The calculated bowtie filter ensured a uniform flux on the detectors. Good correlation between measured and simulated CT numbers was obtained. CONCLUSIONS In principle, Monte Carlo codes such as egs_cbct can model a fan beam CT unit. After reconstruction, the images contained Hounsfield values comparable to measured data.
Collapse
Affiliation(s)
- Dete van Eeden
- Department of Medical Physics, University of the Free State, Bloemfontein 9300, South Africa.
| | - Freek du Plessis
- Department of Medical Physics, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|