1
|
Bliznakova K, Kolev I, Dukov N, Dimova T, Bliznakov Z. Exploring the Potential of a Novel Iodine-Based Material as an Alternative Contrast Agent in X-ray Imaging Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2059. [PMID: 38730863 PMCID: PMC11084318 DOI: 10.3390/ma17092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Contrast-enhanced mammography is one of the new emerging imaging techniques used for detecting breast tissue lesions. Optimization of imaging protocols and reconstruction techniques for this modality, however, requires the involvement of physical phantoms. Their development is related to the use of radiocontrast agents. This study assesses the X-ray properties of a novel contrast material in clinical settings. This material is intended for experimental use with physical phantoms, offering an alternative to commonly available radiocontrast agents. MATERIALS AND METHODS The water-soluble sodium salt of the newly synthesized diiodine-substituted natural eudesmic acid, Sodium 2,6-DiIodo-3,4,5-TriMethoxyBenzoate [NaDITMB], has been investigated with respect to one of the most commonly applied radiocontrast medium in medical practice-Omnipaque®. For this purpose, simulation and experimental studies were carried out with a computational phantom and a physical counterpart, respectively. Synthetic and experimental X-ray images were subsequently produced under varying beam kilovoltage peaks (kVps), and the proposed contrast material was evaluated. RESULTS AND DISCUSSION Simulation results revealed equivalent absorptions between the two simulated radiocontrast agents. Experimental findings supported these simulations, showing a maximum deviation of 3.7% between the image gray values of contrast materials for NaDITMB and Omnipaque solutions for a 46 kVp X-ray beam. Higher kVp X-ray beams show even smaller deviations in the mean grey values of the imaged contrast agents, with the NaDITMB solution demonstrating less than a 2% deviation compared to Omnipaque. CONCLUSION The proposed contrast agent is a suitable candidate for use in experimental work related to contrast-enhanced imaging by utilizing phantoms. It boasts the advantages of easy synthesis and is recognized for its safety, ensuring a secure environment for both the experimenter and the environment.
Collapse
Affiliation(s)
- Kristina Bliznakova
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria; (I.K.); (T.D.)
| | - Nikolay Dukov
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria; (I.K.); (T.D.)
| | - Zhivko Bliznakov
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| |
Collapse
|
2
|
Cockmartin L, Bosmans H, Marshall NW. Investigation of test methods for QC in dual-energy based contrast-enhanced digital mammography systems: I. Iodine signal testing. Phys Med Biol 2023; 68:215017. [PMID: 37820689 DOI: 10.1088/1361-6560/ad027d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The technique of dual-energy contrast enhanced mammography (CEM) visualizes iodine uptake in cancerous breast lesions following an intravenous injection of a contrast medium. The CEM image is generated by recombining two images acquired in rapid succession: a low energy image, with a mean energy below the iodine K-edge, and a higher energy image. The first part of this study examines the use of both commercially available and custom made phantoms to investigate iodine imaging under different imaging conditions, with the focus on quality control (QC) testing. Four CEM equipped systems were included in the study, with units from Fujifilm, GE Healthcare, Hologic and Siemens-Healthineers. The CEM parameters assessed in part I were: (1) image signal as a function of iodine concentration, measured in breast tissue simulating backgrounds of varying thickness and adipose/glandular compositions; (2) normal breast texture cancellation in homogeneous and structured backgrounds; (3) visibility of iodinated structures. For all four systems, a linear response to iodine concentration was found but the degree to which this was independent of background composition differed between the systems. Good cancellation of the glandular tissue inserts was found on all the units. Visibility scores of iodinated targets were similar between the four systems. Specialized phantoms are needed to fully evaluate important CEM performance markers, such as system response to iodine concentration and the ability of the system to cancel background texture. An extensive evaluation of the iodine signal imaging performance is recommended at the Commissioning stage for a new CEM device.
Collapse
Affiliation(s)
- L Cockmartin
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium
| | - H Bosmans
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium
- Medical Imaging Research Center, Medical Physics and Quality Assessment, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - N W Marshall
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium
- Medical Imaging Research Center, Medical Physics and Quality Assessment, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Ruth V, Kolditz D, Steiding C, Kalender WA. Investigation of spectral performance for single-scan contrast-enhanced breast CT using photon-counting technology: A phantom study. Med Phys 2020; 47:2826-2837. [PMID: 32155660 DOI: 10.1002/mp.14133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Contrast-enhanced imaging of the breast is frequently used in breast MRI and has recently become more common in mammography. The purpose of this study was to make single-scan contrast-enhanced imaging feasible for photon-counting breast CT (pcBCT) and to assess the spectral performance of a pcBCT scanner by evaluating iodine maps and virtual non-contrast (VNC) images. METHODS We optimized the settings of a pcBCT to maximize the signal-to-noise ratio between iodinated contrast agent and breast tissue. Therefore, an electronic energy threshold dividing the x-ray spectrum used into two energy bins was swept from 23.17 keV to 50.65 keV. Validation measurements were performed by placing syringes with contrast agent (2.5 mg/ml to 40 mg/ml) in phantoms with 7.5 cm and 12 cm in diameter. Images were acquired at different tube currents and reconstructed with 300 μm isotropic voxel size. Iodine maps and VNC images were generated using image-based material decomposition. Iodine concentrations and CT values were measured for each syringe and compared to the known concentrations and reference CT values. RESULTS Maximal signal-to-noise ratios were found at a threshold position of 32.59 keV. Accurate iodine quantification (average root mean square error of 0.56 mg/ml) was possible down to a concentration of 2.5 mg/ml for all tube currents investigated. The enhancement has been sufficiently removed in the VNC images, so they can be interpreted as unenhanced CT images. Only minor changes of CT values compared to a conventional CT scan were observed. Noise was increased by the decomposition by a factor of 2.62 and 4.87 (7.5 cm and 12 cm phantoms) but did not compromise the accuracy of the iodine quantification. CONCLUSIONS Accurate iodine quantification and generation of VNC images can be achieved using contrast-enhanced pcBCT from a single CT scan in the absence of temporal or spatial misalignment. Using iodine maps and VNC images, pcBCT has the potential to reduce dose, shorten examination and reading time, and to increase cancer detection rates.
Collapse
Affiliation(s)
- Veikko Ruth
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91052, Germany.,AB-CT - Advanced Breast-CT GmbH, Erlangen, 91052, Germany
| | - Daniel Kolditz
- AB-CT - Advanced Breast-CT GmbH, Erlangen, 91052, Germany
| | | | - Willi A Kalender
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91052, Germany.,AB-CT - Advanced Breast-CT GmbH, Erlangen, 91052, Germany
| |
Collapse
|
4
|
Paternò G, Cardarelli P, Gambaccini M, Serafini L, Petrillo V, Drebot I, Taibi A. Inverse Compton radiation: a novel x-ray source for K-edge subtraction angiography? Phys Med Biol 2019; 64:185002. [PMID: 31307026 DOI: 10.1088/1361-6560/ab325c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coronary angiography is clinically used worldwide to diagnose diseases of coronary arteries. Despite its effectiveness, this technique is quite invasive and it is associated with significant risks due to the arterial catheterisation needed to inject the contrast agent. A valid alternative is using the K-edge subtraction (KES) method, which is based on the subtraction of two images acquired at energies bracketing the K-edge of the contrast element. The enhanced sensitivity of KES allows the intravenous injection of the contrast agent, thus reducing the risks of catheterisation. This technique can be effectively implemented by using intense and quasi-monochromatic x-ray beams. Synchrotron radiation has been proven to work well for this purpose, but its cost and size prevent a widespread clinical application. Inverse Compton sources are among the most promising innovative sources of intense and quasi-monochromatic x-rays. These sources are intrinsically more compact than those based on synchrotron radiation. In this work, the potential application of inverse Compton radiation to KES angiography is investigated. To this purpose, after a short review of the physics behind the inverse Compton process, an analytical framework is described. The proposed model is based on the application of the KES algorithm to calculate the SNR of details inside a suitable mathematical phantom. That allowed us to identify the characteristics of an inverse Compton source required for KES imaging. In particular, it was estimated that a photon fluence of 108 ph mm-2 is necessary to detect signals of clinical interest. Novel sources based on inverse Compton promise to achieve this requirement with an acquisition time of few hundreds of ms. This feature, together with compactness, broad two-dimensional radiation field, absence of harmonic contamination and the ability to deliver high photon fluxes also at high energies, makes this kind of sources promising for KES angiography and other diagnostic applications.
Collapse
Affiliation(s)
- G Paternò
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, 44122 Ferrara, Italy. INFN-Sez. Ferrara, Via G. Saragat 1, 44122 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Bliznakova K, Dukov N, Feradov F, Gospodinova G, Bliznakov Z, Russo P, Mettivier G, Bosmans H, Cockmartin L, Sarno A, Kostova-Lefterova D, Encheva E, Tsapaki V, Bulyashki D, Buliev I. Development of breast lesions models database. Phys Med 2019; 64:293-303. [PMID: 31387779 DOI: 10.1016/j.ejmp.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We present the development and the current state of the MaXIMA Breast Lesions Models Database, which is intended to provide researchers with both segmented and mathematical computer-based breast lesion models with realistic shape. METHODS The database contains various 3D images of breast lesions of irregular shapes, collected from routine patient examinations or dedicated scientific experiments. It also contains images of simulated tumour models. In order to extract the 3D shapes of the breast cancers from patient images, an in-house segmentation algorithm was developed for the analysis of 50 tomosynthesis sets from patients diagnosed with malignant and benign lesions. In addition, computed tomography (CT) scans of three breast mastectomy cases were added, as well as five whole-body CT scans. The segmentation algorithm includes a series of image processing operations and region-growing techniques with minimal interaction from the user, with the purpose of finding and segmenting the areas of the lesion. Mathematically modelled computational breast lesions, also stored in the database, are based on the 3D random walk approach. RESULTS The MaXIMA Imaging Database currently contains 50 breast cancer models obtained by segmentation of 3D patient breast tomosynthesis images; 8 models obtained by segmentation of whole body and breast cadavers CT images; and 80 models based on a mathematical algorithm. Each record in the database is supported with relevant information. Two applications of the database are highlighted: inserting the lesions into computationally generated breast phantoms and an approach in generating mammography images with variously shaped breast lesion models from the database for evaluation purposes. Both cases demonstrate the implementation of multiple scenarios and of an unlimited number of cases, which can be used for further software modelling and investigation of breast imaging techniques. The created database interface is web-based, user friendly and is intended to be made freely accessible through internet after the completion of the MaXIMA project. CONCLUSIONS The developed database will serve as an imaging data source for researchers, working on breast diagnostic imaging and on improving early breast cancer detection techniques, using existing or newly developed imaging modalities.
Collapse
Affiliation(s)
- Kristina Bliznakova
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria.
| | - Nikolay Dukov
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria
| | - Firgan Feradov
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria
| | - Galja Gospodinova
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria
| | - Zhivko Bliznakov
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria
| | - Paolo Russo
- Dipartimento di Fisica "Ettore Pancini", Universita' di Napoli Federico II and INFN Sezione di Napoli, Napoli, Italy
| | - Giovanni Mettivier
- Dipartimento di Fisica "Ettore Pancini", Universita' di Napoli Federico II and INFN Sezione di Napoli, Napoli, Italy
| | - Hilde Bosmans
- Department of Radiology, Katholieke University of Leuven, Leuven, Belgium
| | - Lesley Cockmartin
- Department of Radiology, Katholieke University of Leuven, Leuven, Belgium
| | - Antonio Sarno
- Dipartimento di Fisica "Ettore Pancini", Universita' di Napoli Federico II and INFN Sezione di Napoli, Napoli, Italy
| | | | - Elitsa Encheva
- Radiotherapy Department, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Virginia Tsapaki
- Medical Physics Department, Konstantopoulio General Hospital, Nea Ionia, Attiki, Greece
| | - Daniel Bulyashki
- Surgery Department, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Ivan Buliev
- Laboratory of Computer Simulations in Medicine, Technical University of Varna, Varna, Bulgaria
| |
Collapse
|
6
|
[P053] Contrast-enhanced digital mammography on commercial systems: an optimization study. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.06.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Contillo A, Di Domenico G, Cardarelli P, Gambaccini M, Taibi A. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization. Med Phys 2016; 43:3080-3089. [DOI: 10.1118/1.4951730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|