1
|
Jiang L, Ramesh P, Neph R, Sheng K. Technical note: Multi-MATE, a high-throughput platform for automated image-guided small-animal irradiation. Med Phys 2023; 50:7383-7389. [PMID: 37341036 PMCID: PMC10733545 DOI: 10.1002/mp.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Small animal irradiation is essential to study the radiation response of new interventions before or parallel to human therapy. Image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) are recently adopted in small animal irradiation to more closely mimic human treatments. However, sophisticated techniques require exceedingly high time, resources, and expertize that are often impractical. PURPOSE We propose a high throughput and high precision platform named Multiple Mouse Automated Treatment Environment (Multi-MATE) to streamline image-guided small animal irradiation. METHODS Multi-MATE consists of six parallel and hexagonally arranged channels, each equipped with a transfer railing, a 3D-printed immobilization pod, and an electromagnetic control unit, computer-controlled via an Arduino interface. The mouse immobilization pods are transferred along the railings between the home position outside the radiation field and the imaging/irradiation position at the irradiator isocenter. All six immobilization pods are transferred to the isocenter in the proposed workflow for parallel CBCT scans and treatment planning. The immobilization pods are then sequentially transported to the imaging/therapy position for dose delivery. The positioning reproducibility of Multi-MATE are evaluated using CBCT and radiochromic films. RESULTS While parallelizing and automating the image-guided small animal radiation delivery, Multi-MATE achieved the average pod position reproducibility of 0.17 ± 0.04 mm in the superior-inferior direction, 0.20 ± 0.04 mm in the left-right direction, and 0.12 ± 0.02mm in the anterior-posterior direction in repeated CBCT tests. Additionally, in image-guided dose delivery tasks, Multi-MATE demonstrated the positioning reproducibility of 0.17 ± 0.06 mm in the superior-inferior direction, 0.19 ± 0.06 mm in the left-right direction. CONCLUSIONS We designed, fabricated, and tested a novel automated irradiation platform, Multi-MATE to accelerate and automate image-guided small animal irradiation. The automated platform minimizes human operation and achieves high setup reproducibility and image-guided dose delivery accuracy. Multi-MATE thus removes a major barrier to implementing high-precision preclinical radiation research.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Radiation Oncology, University of California, Los Angeles, 90095, USA
| | - Pavitra Ramesh
- Department of Radiation Oncology, University of California, Los Angeles, 90095, USA
| | - Ryan Neph
- Department of Radiation Oncology, University of California, Los Angeles, 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, 94115, USA
| |
Collapse
|
2
|
Robar JL, Kammerzell B, Hulick K, Kaiser P, Young C, Verzwyvelt V, Cheng X, Shepherd M, Orbovic R, Fedullo S, Majcher C, DiMarco S, Stasiak J. Novel multi jet fusion 3D-printed patient immobilization for radiation therapy. J Appl Clin Med Phys 2022; 23:e13773. [PMID: 36052990 DOI: 10.1002/acm2.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Thermoplastic immobilizers are used routinely in radiation therapy to achieve positioning accuracy. These devices are variable in quality as they are dependent on the skill of the human fabricator. We examine the potential multi jet fusion (MJF) 3D printing for the production immobilizers with a focus on the surface dosimetry of several MJF-printed PA12-based material candidates. Materials are compared with the goal of minimizing surface dose with comparison to standard thermoplastic. We introduce a novel metamaterial design for the shell of the immobilizer, with the aims of mechanical robustness and low-dose buildup. We demonstrate first examples of adult and pediatric cranial and head-and-neck immobilizers. METHODS Three different PA12 materials were examined and compared to fused deposition modeling-printed polylactic acid (PLA), PLA with density lowered by adding hollow glass microspheres, and to perforated or perforated/stretched and solid status quo thermoplastic samples. Build-up dose measurements were made using a parallel plate chamber. A metamaterial design was established based on a packed hexagonal geometry. Radiochromic film dosimetry was performed to determine the dependence of surface dose on the metamaterial design. Full cranial and head-and-neck prototype immobilizers were designed, printed, and assessed with regard to dimensional accuracy. RESULTS Build-up dose measurements demonstrated the superiority of the PA12 material with a light fusing agent, which yielded a ∼15% dose reduction compared to other MJF materials. Metamaterial samples provided dose reductions ranging from 11% to 40% compared to stretched thermoplastic. MJF-printed immobilizers were produced reliably, demonstrated the versatility of digital design, and showed dimensional accuracy with 97% of sampled points within ±2 mm. CONCLUSIONS MJF is a promising technology for an automated fabrication of patient immobilizers. Material selection and metamaterial design can be leveraged to yield surface dose reduction of up to 40%. Immobilizer design is highly customizable, and the first examples of MJF-printed immobilizers demonstrate excellent dimensional accuracy.
Collapse
Affiliation(s)
- James L Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada.,Nova Scotia Health, Halifax, Nova Scotia, Canada.,Adaptiiv Medical Technologies, Halifax, Nova Scotia, Canada
| | | | - Kevin Hulick
- HP, Vancouver, Washington, USA.,HP, Corvallis, Oregon, USA
| | - Pierre Kaiser
- HP, Vancouver, Washington, USA.,HP, Corvallis, Oregon, USA
| | - Calvin Young
- HP, Vancouver, Washington, USA.,HP, Corvallis, Oregon, USA
| | | | - Xin Cheng
- HP, Vancouver, Washington, USA.,HP, Corvallis, Oregon, USA
| | | | | | - Sara Fedullo
- Adaptiiv Medical Technologies, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
3
|
Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model. Cancers (Basel) 2021; 13:cancers13143416. [PMID: 34298631 PMCID: PMC8303959 DOI: 10.3390/cancers13143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Stereotactic radiosurgery (SRS) provides precise high-dose irradiation of intracranial tumors. However, its radiobiological mechanisms are not fully understood. This study aims to establish CyberKnife SRS on an intracranial glioblastoma tumor mouse model and assesses the early radiobiological effects of radiosurgery. Following exposure to a single dose of 20 Gy, the tumor volume was evaluated using MRI scans, whereas cellular proliferation and apoptosis, tumor vasculature, and immune response were evaluated using immunofluorescence staining. The mean tumor volume was significantly reduced by approximately 75% after SRS. The precision of irradiation was verified by the detection of DNA damage consistent with the planned dose distribution. Our study provides a suitable mouse model for reproducible and effective irradiation and further investigation of radiobiological effects and combination therapies of intracranial tumors using CyberKnife. Abstract CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
Collapse
|
4
|
Koutsouvelis N, Rouzaud M, Dubouloz A, Nouet P, Jaccard M, Garibotto V, Tournier BB, Zilli T, Dipasquale G. 3D printing for dosimetric optimization and quality assurance in small animal irradiations using megavoltage X-rays. Z Med Phys 2020; 30:227-235. [PMID: 32475758 DOI: 10.1016/j.zemedi.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE New therapeutic options in radiotherapy (RT) are often explored in preclinical in-vivo studies using small animals. We report here on the feasibility of modern megavoltage (MV) linear accelerator (LINAC)-based RT for small animals using easy-to-use consumer 3D printing technology for dosimetric optimization and quality assurance (QA). METHODS In this study we aimed to deliver 5×2Gy to the half-brain of a rat using a 4MV direct hemi-field X-ray beam. To avoid the beam's build-up in the target and optimize dosimetry, a 1cm thick, customized, 3D-printed bolus was used. A 1:1 scale copy of the rat was 3D printed based on the CT dataset as an end-to-end QA tool. The plan robustness to HU changes was verified. Thermoluminescent dosimeters (TLDs), for both MV irradiations and for kV imaging doses, and a gafchromic film were placed within the phantom for dose delivery verifications. The phantom was designed using a standard treatment planning software, and was irradiated at the LINAC with the target aligned using kV on-board imaging. RESULTS The plan was robust (dose difference<1% for HU modification from 0 to 250). Film dosimetry showed a good concordance between planned and measured dose, with the steep dose gradient at the edge of the hemi-field properly aligned to spare the contralateral half-brain. In the treated region, the mean TLDs percentage dose differences (±2 SD) were 1.3% (±3.8%) and 0.9% (±1.7%) beneath the bolus. The mean (±2 SD) out-of-field dose measurements was 0.05Gy (±0.02Gy) for an expected dose of 0.04Gy. Imaging doses (2mGy) still spared the contralateral-brain. CONCLUSIONS Use of consumer 3D-printers enables dosimetry optimization and QA assessment for small animals MV RT in preclinical studies using standard LINACS.
Collapse
Affiliation(s)
| | - Michel Rouzaud
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Angele Dubouloz
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Nouet
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Maud Jaccard
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, Geneva University, Geneva, Switzerland; Nuclear Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Benjamin B Tournier
- Faculty of Medicine, Geneva University, Geneva, Switzerland; Adult Psychiatry, Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Zilli
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | |
Collapse
|
5
|
Asfia A, Novak JI, Mohammed MI, Rolfe B, Kron T. A review of 3D printed patient specific immobilisation devices in radiotherapy. Phys Imaging Radiat Oncol 2020; 13:30-35. [PMID: 33458304 PMCID: PMC7807671 DOI: 10.1016/j.phro.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiotherapy is one of the most effective cancer treatment techniques, however, delivering the optimal radiation dosage is challenging due to movements of the patient during treatment. Immobilisation devices are typically used to minimise motion. This paper reviews published research investigating the use of 3D printing (additive manufacturing) to produce patient-specific immobilisation devices, and compares these to traditional devices. MATERIALS AND METHODS A systematic review was conducted across thirty-eight databases, with results limited to those published between January 2000 and January 2019. A total of eighteen papers suitably detailed the use of 3D printing to manufacture and test immobilisers, and were included in this review. This included ten journal papers, five posters, two conference papers and one thesis. RESULTS 61% of relevant studies featured human subjects, 22% focussed on animal subjects, 11% used phantoms, and one study utilised experimental test methods. Advantages of 3D printed immobilisers reported in literature included improved patient experience and comfort over traditional methods, as well as high levels of accuracy between immobiliser and patient, repeatable setup, and similar beam attenuation properties to thermoformed immobilisers. Disadvantages included the slow 3D printing process and the potential for inaccuracies in the digitisation of patient geometry. CONCLUSION It was found that a lack of technical knowledge, combined with disparate studies with small patient samples, required further research in order to validate claims supporting the benefits of 3D printing to improve patient comfort or treatment accuracy.
Collapse
Affiliation(s)
- Amirhossein Asfia
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
| | - James I. Novak
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | | | - Bernard Rolfe
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Zarghami N, Murrell DH, Jensen MD, Dick FA, Chambers AF, Foster PJ, Wong E. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiat Oncol 2018; 13:104. [PMID: 29859114 PMCID: PMC5984731 DOI: 10.1186/s13014-018-1028-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Background Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases’ responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Methods Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. Results In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Conclusions Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
Collapse
Affiliation(s)
- Niloufar Zarghami
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Donna H Murrell
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Michael D Jensen
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Frederick A Dick
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Ann F Chambers
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada. .,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada. .,Department of Oncology, University of Western Ontario, London, Ontario, Canada. .,Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
Ford E, Emery R, Huff D, Narayanan M, Schwartz J, Cao N, Meyer J, Rengan R, Zeng J, Sandison G, Laramore G, Mayr N. An image-guided precision proton radiation platform for preclinicalin vivoresearch. Phys Med Biol 2016; 62:43-58. [DOI: 10.1088/1361-6560/62/1/43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Ford E, Deye J. Current Instrumentation and Technologies in Modern Radiobiology Research—Opportunities and Challenges. Semin Radiat Oncol 2016; 26:349-55. [DOI: 10.1016/j.semradonc.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Choi WK, Chun JC, Ju SG, Min BJ, Park SY, Nam HR, Hong CS, Kim M, Koo BY, Lim DH. Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy. ACTA ACUST UNITED AC 2016. [DOI: 10.14316/pmp.2016.27.2.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Woo Keun Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Medical Physics, Kyonggi University, Suwon, Korea
| | - Jun Chul Chun
- Department of Medical Physics, Kyonggi University, Suwon, Korea
| | - Sang Gyu Ju
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Jun Min
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Yeon Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Rim Nam
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - MinKyu Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bum Yong Koo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|