1
|
Mercado-Quintero AV, Torres-García E, Isaac-Olivé K, Torres-García R, Aranda-Lara L, Torres-Velázquez H. Novel photopeak-independent correction method for internal activity calculation of 99mTc: a simulation study. RADIATION PROTECTION DOSIMETRY 2024:ncae224. [PMID: 39656846 DOI: 10.1093/rpd/ncae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
This paper presents a new method for correcting the contribution of scattered radiation to the measurement of 99mTc internal activity in nuclear medicine patients using gamma cameras. So, this study aims to derive scattering correction factors by Monte Carlo simulation for anterior and posterior count rates (${I}_{\mathrm{A}}$ and ${I}_{\mathrm{P}}$) in the conjugate view method, enabling more precise estimation of activity A(t) compared to traditional trapezoidal and triangular approximations. The new approach eliminates the need to use photopeak for determining the fraction of scattered photons. Our results showed differences of <3% with respect to the real activity and 11% for the trapezoidal and triangular approaches.
Collapse
Affiliation(s)
- Alfredo V Mercado-Quintero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Eugenio Torres-García
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Rocío Torres-García
- Quiropráctica, Universidad Estatal del Valle de Toluca, Pedregal de Guadalupe Hidalgo, Ocoyoacac 52756, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Hansel Torres-Velázquez
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| |
Collapse
|
2
|
Kayal G, Clayton N, Vergara-Gil A, Struelens L, Bardiès M. Proof-of-concept of DosiTest: A virtual multicentric clinical trial for assessing uncertainties in molecular radiotherapy dosimetry. Phys Med 2022; 97:25-35. [PMID: 35339863 DOI: 10.1016/j.ejmp.2022.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical dosimetry in molecular radiotherapy (MRT) is a multi-step procedure, prone to uncertainties at every stage of the dosimetric workflow. These are difficult to assess, especially as some are complex or even impossible to measure experimentally. The DosiTest project was initiated to assess the variability associated with clinical dosimetry, by setting up a 'virtual' multicentric clinical dosimetry trial based on Monte Carlo (MC) modelling. A reference patient model with a realistic geometry and activity input for a specific tracer is considered. Reference absorbed dose rate distribution maps are generated at various time-points from MC modelling, combining precise information on density and activity distributions (voxel wise). Then, centre-specific calibration and patient SPECT/CT datasets are modelled, on which the clinical centres can perform clinical (i.e. image-based) dosimetry. The results of this dosimetric analysis can be benchmarked against the reference dosimetry to assess the variability induced by implementing different clinical dosimetry approaches. The feasibility of DosiTest is presented here for a clinical situation of therapeutic administration of 177Lu-DOTATATE (Lutathera®) peptide receptor radionuclide therapy (PRRT). From a real patient dataset composed of 5 SPECT/CT images and associated calibrations, we generated the reference absorbed dose rate images with GATE. Then, simulated SPECT/CT image generation based on GATE was performed, both for a calibration phantom and virtual patient images. Based on this simulated dataset, image-based dosimetry could be performed, and compared with reference dosimetry. The good agreement, between real and simulated images, and between reference and image-based dosimetry established the proof of concept of DosiTest.
Collapse
Affiliation(s)
- G Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France; SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium.
| | - N Clayton
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - A Vergara-Gil
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - L Struelens
- SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium
| | - M Bardiès
- ICM, Département de Médecine Nucléaire, Montpellier, France; IRCM, UMR 1194 INSERM, Université de Montpellier and ICM, Montpellier, France
| |
Collapse
|
3
|
Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, Dupont M, Etxebeste A, M Fanchon L, Jan S, Kayal G, S Kirov A, Kowalski P, Krzemien W, Labour J, Lenz M, Loudos G, Mehadji B, Ménard L, Morel C, Papadimitroulas P, Rafecas M, Salvadori J, Seiter D, Stockhoff M, Testa E, Trigila C, Pietrzyk U, Vandenberghe S, Verdier MA, Visvikis D, Ziemons K, Zvolský M, Roncali E. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol 2021; 66:10.1088/1361-6560/abf276. [PMID: 33770774 PMCID: PMC10549966 DOI: 10.1088/1361-6560/abf276] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - Manuel Bardiès
- Cancer Research Institute of Montpellier, U1194 INSERM/ICM/Montpellier University, 208 Av des Apothicaires, F-34298 Montpellier cedex 5, France
| | - Julien Bert
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Maxime Chauvin
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Ane Etxebeste
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Louise M Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Sébastien Jan
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France
| | - Gunjan Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
- SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Paweł Kowalski
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Joey Labour
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Mirjam Lenz
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - George Loudos
- Bioemission Technology Solutions (BIOEMTECH), Alexandras Av. 116, Athens, Greece
| | | | - Laurent Ménard
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | | | | | - Magdalena Rafecas
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Julien Salvadori
- Department of Nuclear Medicine and Nancyclotep molecular imaging platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Daniel Seiter
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, United States of America
| | - Mariele Stockhoff
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Etienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Carlotta Trigila
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| | - Uwe Pietrzyk
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Marc-Antoine Verdier
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | - Dimitris Visvikis
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Karl Ziemons
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Milan Zvolský
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| |
Collapse
|
4
|
Generation of clinical 177Lu SPECT/CT images based on Monte Carlo simulation with GATE. Phys Med 2021; 85:24-31. [PMID: 33957577 DOI: 10.1016/j.ejmp.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Patient-specific dosimetry in MRT relies on quantitative imaging, pharmacokinetic assessment and absorbed dose calculation. The DosiTest project was initiated to evaluate the uncertainties associated with each step of the clinical dosimetry workflow through a virtual multicentric clinical trial. This work presents the generation of simulated clinical SPECT datasets based on GATE Monte Carlo modelling with its corresponding experimental CT image, which can subsequently be processed by commercial image workstations. METHODS This study considers a therapy cycle of 6.85 GBq 177Lu-labelled DOTATATE derived from an IAEA-Coordinated Research Project (E23005) on "Dosimetry in Radiopharmaceutical therapy for personalised patient treatment". Patient images were acquired on a GE Infinia-Hawkeye 4 gamma camera using a medium energy (ME) collimator. Simulated SPECT projections were generated based on experimental time points and validated against experimental SPECT projections using flattened profiles and gamma index. The simulated projections were then incorporated into the patient SPECT/CT DICOM envelopes for processing and their reconstruction within a commercial image workstation. RESULTS Gamma index passing rate (2% - 1 pixel criteria) between 95 and 98% and average gamma between 0.28 and 0.35 among different time points revealed high similarity between simulated and experimental images. Image reconstruction of the simulated projections was successful on HERMES and Xeleris workstations, a major step forward for the initiation of a multicentric virtual clinical dosimetry trial based on simulated SPECT/CT images. CONCLUSIONS Realistic 177Lu patient SPECT projections were generated in GATE. These modelled datasets will be circulated to different clinical departments to perform dosimetry in order to assess the uncertainties in the entire dosimetric chain.
Collapse
|
5
|
Huh Y, Yang J, Dim OU, Cui Y, Tao W, Huang Q, Gullberg GT, Seo Y. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: A simulation study for brain SPECT applications. Med Phys 2021; 48:2301-2314. [PMID: 33704793 DOI: 10.1002/mp.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Single photon emission computed tomography (SPECT) scanners using cadmium zinc telluride (CZT) offer compact, lightweight, and improved imaging capability over conventional NaI(Tl)-based SPECT scanners. The main purpose in this study is to propose a full-ring SPECT system design with eight large-area CZT detectors that can be used for a broad spectrum of SPECT radiopharmaceuticals and demonstrate the performance of our system in comparison to the reference conventional NaI(Tl)-based two-head Anger cameras. METHODS A newly designed full-ring SPECT system is composed of eight large-area CZT cameras (128 mm × 179.2 mm effective area) that can be independently swiveled around their own axes of rotation independently and can have radial motion for varying aperture sizes that can be adapted to different sizes of imaging volume. Extended projection data were generated by conjoining projections of two adjacent detectors to overcome the limited field-of-view (FOV) by each CZT camera. Using Monte Carlo simulations, we evaluated this new system design with digital phantoms including a Derenzo hot rod phantom and a Zubal brain phantom. Comparison of performance metrics such as spatial resolution, sensitivity, contrast-to-noise ratio (CNR), and contrast-recovery ratio was made between our design and conventional SPECT scanners having different pixel sizes and radii of rotation (one clinically well-known type and two arbitrary types matched to our proposed CZT-SPECT geometries). RESULTS The proposed scanner could result in up to about three times faster in acquisition time over conventional scan time at same acquisition time per step. The spatial resolution improvement, or deterioration, of our proposed scanner compared to the clinical-type scanner was dependent upon the location of the point source. However, there were overall performance improvements over the three different setups of the conventional scanner particularly in volume sensitivity (approximately up to 1.7 times). Overall, we successfully reconstructed the phantom image for both 99m Tc-based perfusion and 123 I-based dopamine transporter (DaT) brain studies simulated for our new design. In particular, the striatal/background contrast-recovery ratio in 3-to-1 reference ratio was over 0.8 for the 123 I-based DaT study. CONCLUSIONS We proposed a variable-aperture full-ring SPECT system using combined pixelated CZT and energy-optimized parallel-hole collimator modules and evaluated the performance of this scanner using relevant digital phantoms and MC simulations. Our studies demonstrated the potential of our new full-ring CZT-SPECT design, showing reduced acquisition time and improved sensitivity with acceptable CNR and spatial resolution.
Collapse
Affiliation(s)
- Yoonsuk Huh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Odera U Dim
- Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY, USA
| | - Yonggang Cui
- Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY, USA
| | - Weijie Tao
- Department of Nuclear Medicine, Ruijin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiu Huang
- Department of Nuclear Medicine, Ruijin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Joint Graduate Group in Bioengineering, University of California, San Francisco, CA, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Melgar Pérez J, Orellana Salas A, Santaella Guardiola Y, Antoranz Callejo JC. Improving individualised dosimetry in radioiodine therapy for hyperthyroidism using population biokinetic modelling. Phys Med 2019; 62:33-40. [PMID: 31153396 DOI: 10.1016/j.ejmp.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
The application of an individualised dosimetric procedure for radioiodine therapy requires the intensive use of resources in nuclear medicine facilities. In practice, the amount of data taken per patient is too limited to obtain an accurate estimate of the absorbed dose in the thyroid. The individualised absorbed dose estimates can be enhanced using statistical tools for population-based approaches. The aim of this work was to build a population biokinetic model of thyroid uptake and elimination of radioiodine using a nonlinear mixed-effects approach in patients with Graves' disease. Input data for the model development were taken from a dosimetric method based on 123I imaging data. 123I decay-corrected uptake values were estimated at 4, 24, and 96 h post-administration and for 58 patients. The root mean squared error (RMSE) for predicted 123I uptake values by the fitted model was 4%. The root mean squared error of prediction (RMSEP) for out-of-sample 123I uptake values, computed by a leave-one-out cross-validation, was 12%. We calculated 131I activity to administer from out-of-sample predicted 123I uptake values and compared the result with that calculated from observed 123I uptake values. RMSEP values for therapeutic activity revealed that there were measuring points with higher weight than others in the model. The mixed-effects approach can be used to enhance the accuracy of dosimetric calculations in therapies using 131I. Assessing the accuracy of the predictive model enables choosing among different time-sampling schedules of the radioiodine thyroid uptake curve. This methodology can also be applied in other areas of radiation dosimetry.
Collapse
Affiliation(s)
- J Melgar Pérez
- UGC Radiofísica, Servicio de Radiofísica y Protección Radiológica, Hospital Punta de Europa, 11207 Algeciras (Cádiz), Spain.
| | - A Orellana Salas
- UGC Radiofísica, Servicio de Radiofísica y Protección Radiológica, Hospital Punta de Europa, 11207 Algeciras (Cádiz), Spain
| | - Y Santaella Guardiola
- Servicio de Medicina Nuclear, Hospital Punta de Europa, 11207 Algeciras (Cádiz), Spain
| | | |
Collapse
|
7
|
Costa G, Bonifácio D, Sarrut D, Cajgfinger T, Bardiès M. Optimization of GATE simulations for whole-body planar scintigraphic acquisitions using the XCAT male phantom with 177 Lu-DOTATATE biokinetics in a Siemens Symbia T2. Phys Med 2017; 42:292-297. [DOI: 10.1016/j.ejmp.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 11/29/2022] Open
|
8
|
Common strategic research agenda for radiation protection in medicine. Insights Imaging 2017; 8:183-197. [PMID: 28205026 PMCID: PMC5359143 DOI: 10.1007/s13244-016-0538-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/15/2022] Open
Abstract
Reflecting the change in funding strategies for European research projects, and the goal to jointly improve medical radiation protection through sustainable research efforts, five medical societies involved in the application of ionising radiation (European Association of Nuclear Medicine, EANM; European Federation of Organizations for Medical Physics. EFOMP; European Federation of Radiographer Societies, EFRS; European Society of Radiology, ESR; European Society for Radiotherapy and Oncology, ESTRO) have identified research areas of common interest and developed this first edition of the Common Strategic Research Agenda (SRA) for medical radiation protection. The research topics considered necessary and most urgent for effective medical care and efficient in terms of radiation protection are summarised in five main themes: 1. Measurement and quantification in the field of medical applications of ionising radiation 2. Normal tissue reactions, radiation-induced morbidity and long-term health problems 3. Optimisation of radiation exposure and harmonisation of practices 4. Justification of the use of ionising radiation in medical practice 5. Infrastructures for quality assurance The SRA is a living document; thus comments and suggestions by all stakeholders in medical radiation protection are welcome and will be dealt with by the European Alliance for Medical Radiation Protection Research (EURAMED) established by the above-mentioned societies. MAIN MESSAGES • Overcome the fragmentation of medical radiation protection research in Europe • Identify research areas of joint interest in the field of medical radiation protection • Improve the use of ionising radiation in medicine • Collect stakeholder feedback and seek consensus • Emphasise importance of clinical translation and evaluation of research results.
Collapse
|
9
|
Villoing D, Marcatili S, Garcia MP, Bardiès M. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys Med Biol 2017; 62:1885-1904. [DOI: 10.1088/1361-6560/62/5/1885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Garcia MP, Bert J, Benoit D, Bardiès M, Visvikis D. Accelerated GPU based SPECT Monte Carlo simulations. Phys Med Biol 2016; 61:4001-18. [DOI: 10.1088/0031-9155/61/11/4001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|