1
|
Sebastiano M, Gawhary Randa E, Lorenzo P, Flaviovincenzo Q, Cristian B, Marica M, Matteo N, Maria R, Luca I, Davide C, Antonella F. Multicentric characterisation of lateral beam profiles generated by 6FFF beam of three 0.35 T MR-linac systems. Phys Med 2024; 119:103320. [PMID: 38382209 DOI: 10.1016/j.ejmp.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The physical characterisation of FFF-beam profiles in the presence of a magnetic field requires a new standardization procedure and formulation. PURPOSE The aim of this multicentric experience is to propose new normalisation factors to allow for the calculation of standard parameters typical of flattened beams, such as dosimetric field size and penumbra, for a 6 MV FFF beam from an MR-linac. METHODS The measurements were carried out on three ViewRay-MRIdiansystems. An equal set of measurements was acquired using the same equipment. Transverse beam profiles were acquired at seven different depthsand for six beam dimensions.The inflection point was estimated as the position of the maximum of a Gaussian fit obtained from the first derivative of the profiles. The position of the minimum and maximum points of the second derivative of the above Gaussian described the fall-off region, and the external peaks of the third derivative were considered as the in-field and out-field points. The profile normalisation was determined by imposing a 55% dose level at the inflection point and the renormalisation factors were calculated. RESULTS The position of the inflection point, and the second and third derivatives peaks were analysed,and the renormalisation factors as a function of field size and depth were determined. The values of the unflatness and the slope have been calculated for different depths and field sizes. CONCLUSION This study represents the first multi-centric evaluation of the profiles on different low-field MR-Linac systems and theset of renormalisation parameters to analyse the FFF-beam on that system was effectively proposed.
Collapse
Affiliation(s)
- Menna Sebastiano
- Mater Olbia Hospital, Medical Physics Unit, Olbia/Sassari, Italy
| | - El Gawhary Randa
- San Pietro Fatebenefratelli Hospital, Radiotherapy Dept, Rome, Italy
| | - Placidi Lorenzo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | | | - Borrazzo Cristian
- San Pietro Fatebenefratelli Hospital, Radiotherapy Dept, Rome, Italy
| | - Masi Marica
- San Pietro Fatebenefratelli Hospital, Radiotherapy Dept, Rome, Italy
| | - Nardini Matteo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Rago Maria
- San Pietro Fatebenefratelli Hospital, Radiotherapy Dept, Rome, Italy
| | - Indovina Luca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Cusumano Davide
- Mater Olbia Hospital, Medical Physics Unit, Olbia/Sassari, Italy
| | - Fogliata Antonella
- Humanitas Research Hospital and Cancer Center IRCCS, Radiotherapy Dept, Rozzano/Milan, Italy
| |
Collapse
|
2
|
Gauter-Fleckenstein B, Schönig S, Mertens L, Oppitz H, Siebenlist K, Ehmann M, Fleckenstein J. Effect of simultaneous integrated boost concepts on photoneutron and distant out-of-field doses in VMAT for prostate cancer. Strahlenther Onkol 2024; 200:219-229. [PMID: 37707518 PMCID: PMC10876496 DOI: 10.1007/s00066-023-02138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND A simultaneous integrated boost (SIB) may result in increased out-of-field (DOOF) and photoneutron (HPN) doses in volumetric modulated arc therapy (VMAT) for prostate cancer (PCA). This work therefore aimed to compare DOOF and HPN in flattened (FLAT) and flattening filter-free (FFF) 6‑MV and 10-MV VMAT treatment plans with and without SIB. METHODS Eight groups of 30 VMAT plans for PCA with 6 MV or 10 MV, with or without FF and with uniform (2 Gy) or SIB target dose (2.5/3.0 Gy) prescriptions (CONV, SIB), were generated. All 240 plans were delivered on a slab-phantom and compared with respect to measured DOOF and HPN in 61.8 cm distance from the isocenter. The 6‑ and 10-MV flattened VMAT plans with conventional fractionation (6- and 10-MV FLAT CONV) served as standard reference groups. Doses were analyzed as a function of delivered monitor units (MU) and weighted equivalent square field size Aeq. Pearson's correlation coefficients between the presented quantities were determined. RESULTS The SIB plans resulted in decreased HPN over an entire prostate RT treatment course (10-MV SIB vs. CONV -38.2%). Omission of the flattening filter yielded less HPN (10-MV CONV -17.2%; 10-MV SIB -22.5%). The SIB decreased DOOF likewise by 39% for all given scenarios, while the FFF mode reduced DOOF on average by 60%. A strong Pearson correlation was found between MU and HPN (r > 0.9) as well as DOOF (0.7 < r < 0.9). CONCLUSION For a complete treatment, SIB reduces both photoneutron and OOF doses to almost the same extent as FFF deliveries. It is recommended to apply moderately hypofractionated 6‑MV SIB FFF-VMAT when considering photoneutron or OOF doses.
Collapse
Affiliation(s)
- Benjamin Gauter-Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany.
| | - Sebastian Schönig
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Lena Mertens
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Hans Oppitz
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Kerstin Siebenlist
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Michael Ehmann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
3
|
Ghemiș DM, Marcu LG, Virag V, Virag A. Dosimetric characteristics of 6MV flattening filter free and flattened beams among beam-matched linacs: a three-institutional study. Radiat Oncol 2023; 18:126. [PMID: 37507741 PMCID: PMC10375603 DOI: 10.1186/s13014-023-02313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Beam matching is a concept in radiotherapy applied to clinics where more than one linac is employed to harmonise beam characteristics across linacs for allowing patients interchange without replanning. In view of this, the current study analyzes and compares dosimetric characteristics of 6MV flattening filter free and flattened beams of three beam-matched linear accelerators (linacs) from three different clinics with the aim to evaluate the matching under tight criteria for gamma analysis. METHODS Three Elekta linacs from three different clinics were included. The linacs have the same collimator assembly, Elekta Agility. Beam data were collected during commissioning process using PTW dosimetry systems. Dose profiles and percentage depth doses (PDD) were analyzed using 1D gamma analysis (1 mm/1%) as well as the following parameters: depth of maximum dose, PDD10, flatness, unflattnes, symmetry, penumbra, output factors. Additionally, five stereotactic treatment plans were optimized in one clinic and calculated by all three planning systems (Monaco) for a dosimetric comparison. RESULTS Gamma analysis of dose profiles and PDDs showed clinically acceptable results of 96.3% passing rate for profiles and 100% passing rate for PDDs. All dosimetric parameters were in good agreement with the reference data. Furthermore, dosimetric comparisons between stereotactic treatment plans showed a maximum standard deviation of 0.48 Gy for the maximum dose to PTV, and a maximum standard deviation of 0.1 Gy for the dose to the organs at risk. CONCLUSIONS All three linacs showed a strong agreement between parameters and passed the gamma analysis using 1% DD/1mm DTA criteria. This study confirmed the matching between linacs, offering the possibility to interchange patients with no replanning.
Collapse
Affiliation(s)
- Diana M Ghemiș
- Faculty of Physics, West University of Timisoara, Timisoara, Romania.
- MedEuropa, Oradea, 410191, Romania.
| | - Loredana G Marcu
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
- Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, 5001, Australia
| | | | | |
Collapse
|
4
|
Monte Carlo computation of photon energy spectra in central axis of flattened and unflattened beams and doses in critical organs in a water phantom model of prostate radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Flattening filter free Stereotactic radiosurgery for brain metastases using dynamic conformal arcs: 6 MV or 10 MV? JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396920001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Stereotactic radiosurgery (SRS) has proven itself as an effective tool in the treatment of intracranial lesions. Image-guided high dose single fraction treatments have the potential to deliver ablative doses to tumours; however, treatment times can be long. Flattening filter free (FFF) beams are available on most modern linacs and offer a higher dose rate compared to conventional flattened beams which should reduce treatment times. This study aimed to compare 6 MV FFF and 10 MV FFF to a 6 MV flattened beam for single fraction dynamic conformal arc SRS for a Varian Truebeam linac.Materials and methods:In total, 21 individual clinical treatment plans for 21 brain metastases treated with 6 MV were retrospectively replanned using both 6 MV FFF and 10 MV FFF. Plan quality and efficiency metrics were evaluated by analysing dose coverage, dose conformity, dose gradients, dose to normal brain, beam-on-time (BOT), treatment time and monitor units.Results:FFF resulted in a significant reduction in median BOT for both 6 MV FFF (57·9%; p < 0·001) and 10 MV FFF (76·3%; p < 0·001) which led to reductions in treatment times of 16·8 and 21·5% respectively. However, 6 MV FFF showed superior normal brain dose sparing (p < 0·001) and dose gradient (p < 0·001) compared to 10 MV FFF. No differences were observed for conformity.Conclusion:6 MV FFF offers a significant reduction in average treatment time compared to 6 MV (3·7 minutes; p = 0·002) while maintaining plan quality.
Collapse
|
6
|
McAloney J, Biggs S, Sobolewski M. Linac reported steering error insensitive to 6 MV FFF transverse beam position deviations. Phys Eng Sci Med 2021; 44:1377-1382. [PMID: 34694587 DOI: 10.1007/s13246-021-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Clinically significant beam position deviations were observed for a 6 MV FFF beam during patient specific QA on an Elekta linear accelerator. There was no significant reported transverse steering error from the machine ion chamber, and routine linac QA practices, including cardinal angle Winston-Lutz test, did not identify the deviations. Subsequent investigation using an electronic portal imaging device (EPID) revealed clinically significant beam position deviations for small steering errors. This prompted investigation into further impact and possible solutions. Testing set-points were established by adjusting transverse steering current to achieve introduced 2 T steering errors. Tests at each set-point included scanning water tank profiles and EPID images. A proposed method for adjusting the 2 T error sensitivity was tested via adjusting the 2 T loop parameter such that a reported error corresponds to specific beam position deviations. The testing set-points resulted in positional deviations of greater than 3 mm for reported errors of less than 1. A new method for improving 2 T error sensitivity was implemented. This work has shown that existing vendor protocol for establishing beam steering error for 6 MV FFF beams can lead to beam position deviations without machine interlocks or significant reported steering errors. Thus, an alternative method of establishing steering error sensitivity based on positional deviations is presented.
Collapse
Affiliation(s)
| | | | - Matthew Sobolewski
- Riverina Cancer Care Centre, Wagga Wagga, Australia.,Northern Beaches Cancer Care, Frenchs Forest, Australia
| |
Collapse
|
7
|
Nakano H, Kawahara D, Tanabe S, Utsunomiya S, Takizawa T, Sakai M, Nakano T, Ohta A, Kaidu M, Ishikawa H. Calculated relative biological effectiveness (RBE) for initial DNA double-strand breaks (DSB) from flattening filter and flattening filter-free 6 MV X-ray fields. BJR Open 2021; 3:20200072. [PMID: 34286177 PMCID: PMC8256801 DOI: 10.1259/bjro.20200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives We evaluated the radiobiological effectiveness based on the yields of DNA double-strand breaks (DSBs) of field induction with flattening filter (FF) and FF-free (FFF) photon beams. Methods We used the particle and heavy ion transport system (PHITS) and a water equivalent phantom (30 × 30 × 30 cm3) to calculate the physical qualities of the dose-mean lineal energy (yD) with 6 MV FF and FFF. The relative biological effectiveness based on the yields of DNA-DSBs (RBEDSB) was calculated for standard radiation such as 220 kVp X-rays by using the estimating yields of SSBs and DSBs. The measurement points used to calculate the in-field yD and RBEDSB were located at a depth of 3, 5, and 10 cm in the water equivalent phantom on the central axis. Measurement points at 6, 8, and 10 cm in the lateral direction of each of the three depths from the central axis were set to calculate the out-of-field yD and RBEDSB. Results The RBEDSB of FFF in-field was 1.7% higher than FF at each measurement depth. The RBEDSB of FFF out-of-field was 1.9 to 6.4% higher than FF at each depth measurement point. As the distance to out-of-field increased, the RBEDSB of FFF rose higher than those of FF. FFF has a larger RBEDSB than FF based on the yields of DNA-DSBs as the distance to out-of-field increased. Conclusions The out-of-field radiobiological effect of FFF could thus be greater than that of FF since the spreading of the radiation dose out-of-field with FFF could be a concern compared to the FF. Advances in knowledge The RBEDSB of FFF of out-of-field might be larger than FF.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | | | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, Niigata, 3057 Yamada, Nishi-ku, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, Niigata, 3057 Yamada, Nishi-ku, Niigata, Japan
| |
Collapse
|
8
|
Ghemiş DM, Marcu LG. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit Rev Oncol Hematol 2021; 163:103396. [PMID: 34146680 DOI: 10.1016/j.critrevonc.2021.103396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to summarize and evaluate the current status of knowledge on flattening filter free (FFF) beams and their applications in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). A PubMed search was undertaken in order to identify relevant publications using FFF and stereotactic radiotherapy as keywords. On a clinical aspect, lung tumors treated with FFF SBRT show promising results in terms of local control and overall survival with acute toxicities consistent with those that occur with standard radiotherapy. Beside lung, SBRT is suitable for different anatomical sites such as liver, prostate, cervix, etc. offering similar results: reduced treatment time, good tumor control and mild acute toxicities. Regarding brain tumors, the employment of SRS with FFF beams significantly reduces treatment time and provides notable normal tissue sparing due to the sharp dose fall-off outside the tumor.
Collapse
Affiliation(s)
- Diana M Ghemiş
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
9
|
Hao Y, Cai B, Green O, Knutson N, Yaddanapudi S, Zhao T, Rodriguez V, Schmidt M, Mutic S, Sun B. Technical Note: An alternative approach to verify 6FFF beam dosimetry for Ethos and MR Linac without using a 3D water tank. Med Phys 2021; 48:1533-1539. [PMID: 33547684 DOI: 10.1002/mp.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The current approach to Linac beam dosimetry verification is typically performed utilizing a three-dimensional (3D) water tank system. The 3D beam scanning process is cumbersome, labor intensive, error-prone, and costly. This is especially challenging for the new Ethos system and MR Linacs with a ring gantry. This work proposes an alternative approach to verify 6FFF beam dosimetry for Ethos, ViewRay MRIdian® Linac, and other Linacs with 6FFF beam quality using two-dimensional (2D) ion chamber arrays. METHODS Percentage depth dose (PDD) and profiles of an Ethos, an MRIdian® Linac, and several Linacs with 6FFF beams were measured at the nominal beam current. The beam energy was detuned by changing the bending magnet current on one TrueBeam. PDDs and profiles were measured for detuned beam energies. The peak shape of the 6FFF profile was defined by a "slope" parameter and unflatness. Correlations between peak slope and unflatness metrics vs PDDs were used to evaluate the sensitivity of beam energy to beam profile changes at different field sizes and depths. RESULTS Strong correlations were found between peak slope and PDDs for all Linacs with 6FFF beam. The R-squared values in the linear regression fitting between PDD and peak slope and unflatness were 0.99 and 0.84, respectively. Both profile slope and unflatness were proportional to PDD at the 10 cm depth and the peak slope was 4.3 times more sensitive than PDD. We have identified that measurements with a shallow depth are preferred to quantify the beam energy consistency. CONCLUSIONS Our work shows the feasibility of verifying 6FFF beam quality of Ethos, MR Linac, and other Linacs by defining a profile slope measured from 2D ionization chambers array devices. This new approach provides a simplified method for performing a routine beam quality check without using a 3D water tank system while maximizing cost effectiveness and efficiency.
Collapse
Affiliation(s)
- Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Bin Cai
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Nels Knutson
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sridhar Yaddanapudi
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, LL-W Pomerantz Family Pavilion, Iowa City, IA, 52242-1089, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Vivian Rodriguez
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Matthew Schmidt
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Fogliata A, Cayez R, Garcia R, Khamphan C, Reggiori G, Scorsetti M, Cozzi L. Technical Note: Flattening filter free beam from Halcyon linac: Evaluation of the profile parameters for quality assurance. Med Phys 2020; 47:3669-3674. [PMID: 32367534 DOI: 10.1002/mp.14217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The use of flattening filter free (FFF) beams generated by standard linear accelerators is increasing in the clinical practice. The radiation intensity peaked toward the beam central axis is properly managed in the optimization process of treatment planning through intensity modulation. Specific FFF parameters for profile analysis, as unflatness and slope for FFF beams, based on the renormalization factor concept has been introduced for quality assurance purposes. Recently, Halcyon, an O-ring based linear accelerator equipped with a 6 MV FFF beam only has been introduced by Varian. METHODS Renormalization factors and related fit parameters according to Fogliata et al. ["Definition of parameters for quality assurance of FFF photon beams in radiation therapy," Med. Phys. 39, 6455-6464 (2012)] have been evaluated for the 6 MV FFF beam generated by Halcyon units. The Halcyon representative beam data provided by Varian were used. Dose fall-off at the field edges was matched with an unflattened beam generated by a 6 MV from a TrueBeam linac. Consistency of the results was evaluated against measurements on a clinical Halcyon unit, as well as a TrueBeam 6 MV FFF for comparison. RESULTS The five parameters in the analytical equation for estimating the renormalization factor were determined with an R2 of 0.997. The comparison of the unflatness parameters between the Halcyon representative and hospital beam data was consistent within a range of 0.6%. Consistently with the computed parameters, the Halcyon profiles resulted in a less pronounced peak than TrueBeam. CONCLUSION Renormalization factors and related fit parameters from the 6 MV FFF beam generated by the Varian Halcyon unit are provided.
Collapse
Affiliation(s)
- A Fogliata
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - R Cayez
- Oscar Lambret Center, rue Frédéric Combemale, Radiotherapy, 59000, Lille, France
| | - R Garcia
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - C Khamphan
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - G Reggiori
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - M Scorsetti
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| | - L Cozzi
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| |
Collapse
|
11
|
Zhang M, Fan Q, Lei Y, Thapa B, Padula G. Assessment of an Elekta Versa HD linear accelerator for stereotactic radiosurgery with circular cone collimators. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:71-82. [PMID: 31904001 DOI: 10.3233/xst-190580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Versa HD linear accelerators (linacs) are used for stereotactic radiosurgery treatment. However, the mechanical accuracy of such systems remains a concern. OBJECTIVE The purpose of this study was to evaluate the accuracy of an Elekta Versa HD linac. METHODS We performed measurements with a ball bearing phantom to calculate the rotational isocenter radii of the linac's gantry, collimator, and table, and determine the relative locations of those isocenters. We evaluated the accuracy of the cone-beam computed tomography (CBCT) guidance with a film-embedding head phantom and circular cone-collimated radiation beams. We also performed dosimetric simulations to study the effects of the linac mechanical uncertainties on non-coplanar cone arc delivery. RESULTS The mechanical uncertainty of the linac gantry rotation was 0.78 mm in radius, whereas that of the collimator and the table was <0.1 mm and 0.33 mm, respectively. The axes of rotation of the collimator and the table were coinciding with and 0.13 mm away from the gantry isocenter, respectively. Experiments with test plans demonstrated the limited dosimetric consequences on the circular arc delivery given the aforementioned mechanical uncertainties. End-to-end measurements determined that the uncertainty of the CBCT guidance was≤1 mm in each direction with respect to the reference CT image. CONCLUSIONS In arc delivery, the mechanical uncertainties associated with the gantry and the table do not require remarkable increases in geometric margins. If large enough, the residual setup errors following CBCT guidance will dominate the overall dosimetric consequence. Therefore, the Versa HD linac is a valid system for stereotactic radiosurgery using non-coplanar arc delivery.
Collapse
Affiliation(s)
- Mutian Zhang
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| | - Qiyong Fan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bishnu Thapa
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| | - Gilbert Padula
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| |
Collapse
|
12
|
Lopes MDC, Santos T, Ventura T, Capela M. Application of the TRS 483 code of practice for reference and relative dosimetry in tomotherapy. Med Phys 2019; 46:5799-5806. [DOI: 10.1002/mp.13855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Tania Santos
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
- Physics Department FCTUC University of Coimbra Coimbra Portugal
| | - Tiago Ventura
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
| | - Miguel Capela
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
| |
Collapse
|
13
|
Tanaka Y, Mizuno H, Akino Y, Isono M, Masai N, Yamamoto T. Do the representative beam data for TrueBeam ™ linear accelerators represent average data? J Appl Clin Med Phys 2019; 20:51-62. [PMID: 30636358 PMCID: PMC6370991 DOI: 10.1002/acm2.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 11/26/2018] [Indexed: 11/11/2022] Open
Abstract
If the vendor's representative beam data (RBD) for TrueBeam linear accelerators are to be valid for use in clinical practice, the variations in the beam data used for beam modeling must be small. Although a few studies have reported the variation of the beam data of the TrueBeam machines, the numbers of machines analyzed in those studies were small. In this study, we investigated the variation in the beam data for 21 TrueBeam machines collected from 17 institutions with their agreement. In the exponential regions, the percent depth dose (PDD) values showed very small variation, <1% for all the photon energies analyzed. Similarly, the off‐center ratio (OCR) values also showed small variation for all energies. In the field regions, the standard deviations of the values of dose difference (DD) between the data for each machine and the study average were <1% for field sizes ≥100 × 100 mm2. The maximum distance‐to‐agreement from the average data was <0.5 mm in the penumbra regions. The output factor (OPF) values also showed very small variation (<1%) for all energies and field sizes. Both the PDD and OCR of the average study data showed good agreement with the vendor's RBD for field sizes ≥100 × 100 mm2. The OPF of the average study data also showed good agreement with the vendor's RBD for all field sizes. However, although all the institutions used ionization chambers with similar cavity volumes, the 30 × 30 mm2 field size showed large DD variations (≥2%) in OCR in the field regions. We conclude that the intermachine variability of TrueBeam linear accelerators was very small except for small field dosimetry, supporting the validity of the use of the RBD for clinical applications. The use of the vendor's RBD might greatly facilitate the quick installation of a new linear accelerator.
Collapse
Affiliation(s)
- Yoshihiro Tanaka
- Department of Radiation Therapy, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto-shi, Kyoto, Japan
| | - Hirokazu Mizuno
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Yuichi Akino
- Oncology Center, Osaka University Hospital, Suita-shi, Osaka, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka-shi, Osaka, Japan
| | | | - Toshijiro Yamamoto
- Department of Radiology, Saiseikai Noe Hospital, Osaka-shi, Osaka, Japan
| |
Collapse
|
14
|
Reggiori G, Stravato A, Mancosu P, Lobefalo F, Paganini L, Zucconi F, Palumbo V, Gaudino A, Scorsetti M, Tomatis S. Small field characterization of a Nanochamber prototype under flattening filter free photon beams. Phys Med 2018; 49:139-146. [DOI: 10.1016/j.ejmp.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022] Open
|
15
|
Aznar MC, Warren S, Hoogeman M, Josipovic M. The impact of technology on the changing practice of lung SBRT. Phys Med 2018; 47:129-138. [PMID: 29331227 PMCID: PMC5883320 DOI: 10.1016/j.ejmp.2017.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/23/2017] [Indexed: 02/09/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) for lung tumours has been gaining wide acceptance in lung cancer. Here, we review the technological evolution of SBRT delivery in lung cancer, from the first treatments using the stereotactic body frame in the 1990's to modern developments in image guidance and motion management. Finally, we discuss the impact of current technological approaches on the requirements for quality assurance as well as future technological developments.
Collapse
Affiliation(s)
- Marianne Camille Aznar
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Institute for Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Samantha Warren
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mischa Hoogeman
- MC-Daniel den Hoed Cancer Center, Erasmus University, Rotterdam, Netherlands
| | - Mirjana Josipovic
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Section for Radiotherapy, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Paynter D, Weston SJ, Cosgrove VP, Thwaites DI. Characterisation of flattening filter free (FFF) beam properties for initial beam set-up and routine QA, independent of flattened beams. Phys Med Biol 2017; 63:015021. [DOI: 10.1088/1361-6560/aa9a1f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Surface dose measurements in and out of field: Implications for breast radiotherapy with megavoltage photon beams. Z Med Phys 2017; 27:318-323. [PMID: 28595775 DOI: 10.1016/j.zemedi.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6MV, 6MV FFF, 10MV, 10MV FFF and 18MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.
Collapse
|
18
|
Seppälä J, Voutilainen A, Heikkilä J, Vauhkonen M. Surface doses of flattening filter free beams with volumetric modulated arc therapy dose delivery for breast cancer. Phys Imaging Radiat Oncol 2017. [DOI: 10.1016/j.phro.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Li F, Park JY, Barraclough B, Lu B, Li J, Liu C, Yan G. Efficient independent planar dose calculation for FFF IMRT QA with a bivariate Gaussian source model. J Appl Clin Med Phys 2017; 18:125-135. [PMID: 28300374 PMCID: PMC5689940 DOI: 10.1002/acm2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/07/2022] Open
Abstract
The aim of this study is to perform a direct comparison of the source model for photon beams with and without flattening filter (FF) and to develop an efficient independent algorithm for planar dose calculation for FF‐free (FFF) intensity‐modulated radiotherapy (IMRT) quality assurance (QA). The source model consisted of a point source modeling the primary photons and extrafocal bivariate Gaussian functions modeling the head scatter, monitor chamber backscatter, and collimator exchange effect. The model parameters were obtained by minimizing the difference between the calculated and measured in‐air output factors (Sc). The fluence of IMRT beams was calculated from the source model using a backprojection and integration method. The off‐axis ratio in FFF beams were modeled with a fourth degree polynomial. An analytical kernel consisting of the sum of three Gaussian functions was used to describe the dose deposition process. A convolution‐based method was used to account for the ionization chamber volume averaging effect when commissioning the algorithm. The algorithm was validated by comparing the calculated planar dose distributions of FFF head‐and‐neck IMRT plans with measurements performed with a 2D diode array. Good agreement between the measured and calculated Sc was achieved for both FF beams (<0.25%) and FFF beams (<0.10%). The relative contribution of the head‐scattered photons reduced by 34.7% for 6 MV and 49.3% for 10 MV due to the removal of the FF. Superior agreement between the calculated and measured dose distribution was also achieved for FFF IMRT. In the gamma comparison with a 2%/2 mm criterion, the average passing rate was 96.2 ± 1.9% for 6 MV FFF and 95.5 ± 2.6% for 10 MV FFF. The efficient independent planar dose calculation algorithm is easy to implement and can be valuable in FFF IMRT QA.
Collapse
Affiliation(s)
- Feifei Li
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| | - Ji-Yeon Park
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| | - Brendan Barraclough
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
- Department of Biomedical Engineering; University of Florida; Gainesville FL USA
| | - Bo Lu
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| | - Jonathan Li
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| | - Chihray Liu
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| | - Guanghua Yan
- Department of Radiation Oncology; University of Florida; Gainesville FL USA
| |
Collapse
|
20
|
Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, Paynter D, Thomas R. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol 2016; 61:8360-8394. [DOI: 10.1088/0031-9155/61/23/8360] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|