1
|
Bronk TS, Everitt AC, Murphy EK, Halter RJ. Novel Electrode Placement in Electrical Bioimpedance-Based Stroke Detection: Effects on Current Penetration and Injury Characterization in a Finite Element Model. IEEE Trans Biomed Eng 2022; 69:1745-1757. [PMID: 34813463 PMCID: PMC9172913 DOI: 10.1109/tbme.2021.3129734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Reducing time-to-treatment and providing acute management in stroke are essential for patient recovery. Electrical bioimpedance (EBI) is an inexpensive and non-invasive tissue measurement approach that has the potential to provide novel continuous intracranial monitoring-something not possible in current standard-of-care. While extensive previous work has evaluated the feasibility of EBI in diagnosing stroke, high-impedance anatomical features in the head have limited clinical translation. METHODS The present study introduces novel electrode placements near highly-conductive cerebral spinal fluid (CSF) pathways to enhance electrical current penetration through the skull and increase detection accuracy of neurologic damage. Simulations were conducted on a realistic finite element model (FEM). Novel electrode placements at the tear ducts, soft palate and base of neck were evaluated. Classification accuracy was assessed in the presence of signal noise, patient variability, and electrode positioning. RESULTS Algorithms were developed to successfully determine stroke etiology, location, and size relative to impedance measurements from a baseline scan. Novel electrode placements significantly increased stroke classification accuracy at various levels of signal noise (e.g., p < 0.001 at 40 dB). Novel electrodes also amplified current penetration, with up to 30% increase in current density and 57% increased sensitivity in central intracranial regions (p < 0.001). CONCLUSION These findings support the use of novel electrode placements in EBI to overcome prior limitations, indicating a potential approach to increasing the technology's clinical utility in stroke identification. SIGNIFICANCE A non-invasive EBI monitor for stroke could provide essential timely intervention and care of stroke patients.
Collapse
|
2
|
Yang L, Dai M, Cao Q, Ding S, Zhao Z, Cao X, Wen Z, Wang H, Xie M, Fu F. Real-time monitoring hypoxia at high altitudes using electrical bioimpedance technique: an animal experiment. J Appl Physiol (1985) 2021; 130:952-963. [PMID: 33270508 DOI: 10.1152/japplphysiol.00712.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia poses a serious threat to pilots. The aim of this study was to examine the efficacy of electrical bioimpedance (EBI) in detecting the onset of hypoxia in real time in a rabbit hypoxia model. Thirty-two New Zealand rabbits were divided equally into four groups (control group and three hypoxia groups, i.e., mild, moderate, and severe). Hypoxia was induced by simulating various altitudes in the hypobaric oxygen chamber (3,000 m, 5,000 m, and 8,000 m). Both cerebral impedance and blood oxygen (SpO2) were monitored continuously. Results showed that the cerebral impedance increased immediately during the period of increasing altitude and decreased quickly to the initial baseline at the phase of descending altitude. Moreover, the change of cerebral impedance in the mild hypoxia group (3,000 m) was significantly smaller than those in the other two groups (5,000 m and 8,000 m, P < 0.05). The changes in cerebral impedance and SpO2 were significantly correlated based on the total of measurement data (r2 = 0.628, P < 0.001). Furthermore, the agreement analysis performed with Bland-Altman and standardized residual plots exhibited high concordance between cerebral impedance and SpO2. Receiver operator characteristic analysis manifested that the sensitivity, specificity, and area under the curve using cerebral impedance for changes in SpO2 >10% were 0.735, 0.826, and 0.845, respectively. These findings demonstrated that EBI could sensitively and accurately monitor changes of cerebral impedance induced by hypoxia, which might provide a potential tool for the real-time and noninvasive monitoring of hypoxic condition of pilots in flight for early identification of hypoxia.NEW & NOTEWORTHY This study is the first to examine the efficacy of electrical bioimpedance (EBI) in detecting the onset of high-altitude hypoxia in real time. The novelty of this research includes three aspects. First, the cerebral impedance of rabbits increased immediately during the rising of altitude and decreased quickly to the initial baseline at the phase of descending altitude. Second, there was a significant correlation and high concordance between cerebral impedance and SpO2. Third, cerebral impedance could determine the change of SpO2 resulting from hypoxia.
Collapse
Affiliation(s)
- Lin Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Meng Dai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Qinglin Cao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuai Ding
- School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Xinsheng Cao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhihong Wen
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Hang Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Iacono MI, Atefi SR, Mainardi L, Walker HC, Angelone LM, Bonmassar G. A Study on the Feasibility of the Deep Brain Stimulation (DBS) Electrode Localization Based on Scalp Electric Potential Recordings. Front Physiol 2019; 9:1788. [PMID: 30662407 PMCID: PMC6328462 DOI: 10.3389/fphys.2018.01788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Deep Brain Stimulation (DBS) is an effective therapy for patients disabling motor symptoms from Parkinson's disease, essential tremor, and other motor disorders. Precise, individualized placement of DBS electrodes is a key contributor to clinical outcomes following surgery. Electroencephalography (EEG) is widely used to identify the sources of intracerebral signals from the potential on the scalp. EEG is portable, non-invasive, low-cost, and it could be easily integrated into the intraoperative or ambulatory environment for localization of either the DBS electrode or evoked potentials triggered by stimulation itself. In this work, we studied with numerical simulations the principle of extracting the DBS electrical pulse from the patient's EEG - which normally constitutes an artifact - and localizing the source of the artifact (i.e., the DBS electrodes) using EEG localization methods. A high-resolution electromagnetic head model was used to simulate the EEG potential at the scalp generated by the DBS pulse artifact. The potential distribution on the scalp was then sampled at the 256 electrode locations of a high-density EEG Net. The electric potential was modeled by a dipole source created by a given pair of active DBS electrodes. The dynamic Statistical Parametric Maps (dSPM) algorithm was used to solve the EEG inverse problem, and it allowed localization of the position of the stimulus dipole in three DBS electrode bipolar configurations with a maximum error of 1.5 cm. To assess the accuracy of the computational model, the results of the simulation were compared with the electric artifact amplitudes over 16 EEG electrodes measured in five patients. EEG artifacts measured in patients confirmed that simulated data are commensurate to patients' data (0 ± 6.6 μV). While we acknowledge that further work is necessary to achieve a higher accuracy needed for surgical navigation, the results presented in this study are proposed as the first step toward a validated computational framework that could be used for non-invasive localization not only of the DBS system but also brain rhythms triggered by stimulation at both proximal and distal sites in the human central nervous system.
Collapse
Affiliation(s)
- Maria Ida Iacono
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Seyed Reza Atefi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Luca Mainardi
- Bioengineering Department, Politecnico di Milano, Milan, Italy
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.,Division of Movement Disorders, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
4
|
On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System. Sci Rep 2016; 6:37620. [PMID: 27897197 PMCID: PMC5126641 DOI: 10.1038/srep37620] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system’s operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.
Collapse
|