1
|
Cha DI, Kang TW, Min JH, Joo I, Sinn DH, Ha SY, Kim K, Lee G, Yi J. Deep learning-based automated quantification of the hepatorenal index for evaluation of fatty liver by ultrasonography. Ultrasonography 2021; 40:565-574. [PMID: 33966363 PMCID: PMC8446496 DOI: 10.14366/usg.20179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The aim of this study was to develop and validate a fully-automatic quantification of the hepatorenal index (HRI) calculated by a deep convolutional neural network (DCNN) comparable to the interpretations of radiologists experienced in ultrasound (US) imaging. METHODS In this retrospective analysis, DCNN-based organ segmentation with Gaussian mixture modeling for automated quantification of the HRI was developed using abdominal US images from a previous study. For validation, 294 patients who underwent abdominal US examination before living-donor liver transplantation were selected. Interobserver agreement for the measured brightness of the liver and kidney and the calculated HRI were analyzed between two board-certified radiologists and DCNN using intraclass correlation coefficients (ICCs). RESULTS Most patients had normal (n=95) or mild (n=198) fatty liver. The ICCs of hepatic and renal brightness measurements and the calculated HRI between the two radiologists were 0.892 (95% confidence interval [CI], 0.866 to 0.913), 0.898 (95% CI, 0.873 to 0.918), and 0.681 (95% CI, 0.615 to 0.738) for the first session and 0.920 (95% CI, 0.901 to 0.936), 0.874 (95% CI, 0.844 to 0.898), and 0.579 (95% CI, 0.497 to 0.650) for the second session, respectively; the results ranged from moderate to excellent agreement. Using the same task, the ICCs of the hepatic and renal measurements and the calculated HRI between the average values of the two radiologists and DCNN were 0.919 (95% CI, 0.899 to 0.935), 0.916 (95% CI, 0.895 to 0.932), and 0.734 (95% CI, 0.676 to 0.782), respectively, showing high to excellent agreement. CONCLUSION Automated quantification of HRI using DCNN can yield HRI measurements similar to those obtained by experienced radiologists in patients with normal or mild fatty liver.
Collapse
Affiliation(s)
- Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Wook Kang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hye Min
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Gunwoo Lee
- Medical Imaging R&D Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Jonghyon Yi
- Medical Imaging R&D Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| |
Collapse
|
3
|
Berthon B, Spezi E, Galavis P, Shepherd T, Apte A, Hatt M, Fayad H, De Bernardi E, Soffientini CD, Ross Schmidtlein C, El Naqa I, Jeraj R, Lu W, Das S, Zaidi H, Mawlawi OR, Visvikis D, Lee JA, Kirov AS. Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Med Phys 2017; 44:4098-4111. [PMID: 28474819 PMCID: PMC5575543 DOI: 10.1002/mp.12312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose The aim of this paper is to define the requirements and describe the design and implementation of a standard benchmark tool for evaluation and validation of PET‐auto‐segmentation (PET‐AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by the American Association of Physicists in Medicine (AAPM). Methods The recommendations published in the AAPM TG211 report were used to derive a set of required features and to guide the design and structure of a benchmarking software tool. These items included the selection of appropriate representative data and reference contours obtained from established approaches and the description of available metrics. The benchmark was designed in a way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its main purpose of being a standard testing platform for newly developed PET‐AS methods. An example of implementation of the proposed framework, named PETASset, was built. In this work, a selection of PET‐AS methods representing common approaches to PET image segmentation was evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the software as a benchmark platform. Results A selection of clinical, physical, and simulated phantom data, including “best estimates” reference contours from macroscopic specimens, simulation template, and CT scans was built into the PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of any given PET‐AS algorithm to the reference contours. In addition, a tool to generate structured reports on the evaluation of the performance of PET‐AS algorithms against the reference contours was built. The variation of the metric agreement values with the reference contours across the PET‐AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and 1.00 for DSC, PPV, and the S metric, respectively. Examples of agreement limits were provided to show how the software could be used to evaluate a new algorithm against the existing state‐of‐the art. Conclusions PETASset provides a platform that allows standardizing the evaluation and comparison of different PET‐AS methods on a wide range of PET datasets. The developed platform will be available to users willing to evaluate their PET‐AS methods and contribute with more evaluation datasets.
Collapse
Affiliation(s)
- Beatrice Berthon
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, Paris, 75012, France
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - Paulina Galavis
- Department of Radiation Oncology, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - Tony Shepherd
- Turku PET Centre, Turku University Hospital, Turku, 20521, Finland
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, 29609, France
| | - Hadi Fayad
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, 29609, France
| | | | - Chiara D Soffientini
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, 20133, Italy
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Robert Jeraj
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Habib Zaidi
- Division of Nuclear Medicine & Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland
| | - Osama R Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - John A Lee
- IREC/MIRO, Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels, 1200, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|