1
|
Kantemiris I, Pappas EP, Lymperopoulou G, Thanasas D, Karaiskos P. Monte Carlo-Based Radiobiological Investigation of the Most Optimal Ion Beam Forming SOBP for Particle Therapy. J Pers Med 2022; 13:jpm13010023. [PMID: 36675684 PMCID: PMC9864401 DOI: 10.3390/jpm13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Proton (p) and carbon (C) ion beams are in clinical use for cancer treatment, although other particles such as He, Be, and B ions have more recently gained attention. Identification of the most optimal ion beam for radiotherapy is a challenging task involving, among others, radiobiological characterization of a beam, which is depth-, energy-, and cell type- dependent. This study uses the FLUKA and MCDS Monte Carlo codes in order to estimate the relative biological effectiveness (RBE) for several ions of potential clinical interest such as p, 4He, 7Li, 10Be, 10B, and 12C forming a spread-out Bragg peak (SOBP). More specifically, an energy spectrum of the projectiles corresponding to a 5-cm SOBP at a depth of 8 cm was used. All secondary particles produced by the projectiles were considered and RBE was determined based on radiation-induced Double Strand Breaks (DSBs), as calculated by MCDS. In an attempt to identify the most optimal ion beam, using the latter data, biological optimization was performed and the obtained depth-dose distributions were inter-compared. The results showed that 12C ions are more effective inside the SOBP region, which comes at the expense of higher dose values at the tail (i.e., after the SOBP). In contrast, p beams exhibit a higher DSOPB/DEntrance ratio, if physical doses are considered. By performing a biological optimization in order to obtain a homogeneous biological dose (i.e., dose × RBE) in the SOBP, the corresponding advantages of p and 12C ions are moderated. 7Li ions conveniently combine a considerably lower dose tail and a DSOPB/DEntrance ratio similar to 12C. This work contributes towards identification of the most optimal ion beam for cancer therapy. The overall results of this work suggest that 7Li ions are of potential interest, although more studies are needed to demonstrate the relevant advantages. Future work will focus on studying more complex beam configurations.
Collapse
Affiliation(s)
- Ioannis Kantemiris
- Medical Physics Department, Metropolitan Hospital, 18547 Neo Faliro, Greece
| | - Eleftherios P. Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Lymperopoulou
- 1st Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios Thanasas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
2
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
3
|
Moteabbed M, Smeets J, Hong TS, Janssens G, Labarbe R, Wolfgang JA, Bortfeld TR. Toward MR-integrated proton therapy: modeling the potential benefits for liver tumors. Phys Med Biol 2021; 66. [PMID: 34407528 DOI: 10.1088/1361-6560/ac1ef2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI)-integrated proton therapy (MRiPT) is envisioned to improve treatment quality for many cancer patients. However, given the availability of alternative image-guided strategies, its clinical need is yet to be justified. This study aims to compare the expected clinical outcomes of MRiPT with standard of practice cone-beam CT (CBCT)-guided PT, and other MR-guided methods, i.e. offline MR-guided PT and MR-linac, for treatment of liver tumors. Clinical outcomes were assessed by quantifying the dosimetric and biological impact of target margin reduction enabled by each image-guided approach. Planning target volume (PTV) margins were calculated using random and systematic setup, delineation and motion uncertainties, which were quantified by analyzing longitudinal MRI data for 10 patients with liver tumors. Proton treatment plans were created using appropriate PTV margins for each image-guided PT method. Photon plans with margins equivalent to MRiPT were generated to represent MR-linac. Normal tissue complication probabilities (NTCP) of the uninvolved liver were compared. We found that PTV margin can be reduced by 20% and 40% for offline MR-guided PT and MRiPT, respectively, compared with CBCT-guided PT. Furthermore, clinical target volume expansion could be largely alleviated when delineating on MRI rather than CT. Dosimetric implications included decreased equivalent mean dose of the uninvolved liver, i.e. up to 24.4 Gy and 27.3 Gy for offline MR-guided PT and MRiPT compared to CBCT-guided PT, respectively. Considering Child-Pugh score increase as endpoint, NTCP of the uninvolved liver was significantly decreased for MRiPT compared to CBCT-guided PT (up to 48.4%,p < 0.01), offline MR-guided PT (up to 12.9%,p < 0.01) and MR-linac (up to 30.8%,p < 0.05). Target underdose was possible in the absence of MRI-guidance (D90 reduction up to 4.2 Gy in 20% of cases). In conclusion, MRiPT has the potential to significantly reduce healthy liver toxicities in patients with liver tumors. It is superior to other image-guided techniques currently available.
Collapse
Affiliation(s)
- Maryam Moteabbed
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | - Rudi Labarbe
- Ion Beam Applications, Louvain-La-Neuve, Belguim
| | - John A Wolfgang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Thomas R Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Liu G, Li X, Qin A, Zhou J, Zheng W, Zhao L, Han J, Zhang S, Yan D, Stevens C, Grills I, Ding X. Is proton beam therapy ready for single fraction spine SBRS? - a feasibility study to use spot-scanning proton arc (SPArc) therapy to improve the robustness and dosimetric plan quality. Acta Oncol 2021; 60:653-657. [PMID: 33645429 DOI: 10.1080/0284186x.2021.1892183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Jun Han
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| |
Collapse
|
5
|
Liu G, Li X, Qin A, Zheng W, Yan D, Zhang S, Stevens C, Kabolizadeh P, Ding X. Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study. Radiat Oncol 2020; 15:21. [PMID: 32000817 PMCID: PMC6990547 DOI: 10.1186/s13014-020-1476-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To explore the dosimetric improvement, delivery efficiency, and plan robustness for bilateral head and neck cancer (HNC) treatment utilizing a novel proton therapy technique - the spot-scanning proton arc (SPArc) therapy. METHODS We evaluated fourteen bilateral HNC patients retrospectively. Both SPArc and 3-field Intensity Modulated Proton Therapy (IMPT) plans were generated for each patient using the same robust optimization parameters. The prescription doses were 70Gy (relative biological effectiveness (RBE) for CTV_high and 60Gy[RBE] for CTV_low. Clinically significant dosimetric parameters were extracted and compared. Root-mean-square deviation dose (RMSDs) Volume Histogram(RVH) was used to evaluate the plan robustness. Total treatment delivery time was estimated based on the machine parameters. RESULTS The SPArc plan was able to provide equivalent or better robust target coverage while showed significant dosimetric improvements over IMPT in most of the organs at risk (OARs). More specifically, it reduced the mean dose of the ipsilateral parotid, contralateral parotid, and oral cavity by 25.8%(p = 0.001), 20.8%(p = 0.001) and 20.3%(p = 0.001) respectively compared to IMPT. This technique reduced D1 (the maximum dose covering 1% volume of a structure) of cord and brain stem by 20.8% (p = 0.009) and 10.7% (p = 0.048), respectively. SPArc also reduced the average integral dose by 17.2%(p = 0.001) and external V3Gy (the volume received 3Gy[RBE]) by 8.3%(p = 0.008) as well. RVH analysis showed that the SPArc plans reduced the dose uncertainties in most OARs compared to IMPT, such as cord: 1.1 ± 0.4Gy[RBE] vs 0.7 ± 0.3Gy[RBE](p = 0.001), brain stem: 0.9 ± 0.7Gy[RBE] vs 0.7 ± 0.7Gy[RBE](p = 0.019), contralateral parotid: 2.5 ± 0.5Gy[RBE] vs 2.2 ± 0.6Gy[RBE](p = 0.022) and ipsilateral parotid: 3.1 ± 0.7Gy[RBE] vs 2.8 ± 0.6Gy[RBE](p = 0.004) respectively. The average total estimated treatment delivery time were 283.4 ± 56.2 s, 469.2 ± 62.0 s and 1294.9 ± 106.7 s based on energy-layer-switching-time (ELST) of 0.1 s, 1 s, and 5 s respectively for SPArc plans, compared to the respective values of 328.0 ± 47.6 s(p = 0.002), 434.1 ± 52.0 s(p = 0.002), and 901.7 ± 74.8 s(p = 0.001) for 3-field IMPT plans. The potential clinical benefit of utilizing SPArc will lead to a decrease in the mean probability of salivary flow dysfunction by 31.3%(p = 0.001) compared with IMPT. CONCLUSIONS SPArc could significantly spare OARs while providing a similar or better robust target coverage compared with IMPT in the treatment of bilateral HNC. In the modern proton system with ELST less than 0.5 s, SPArc could potentially be implemented in the routine clinic with a practical, achievable treatment delivery efficiency.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023 China
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
- School of Physics and Technology, Wuhan University, Hubei, Wuhan, 430072 China
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023 China
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI 48074 USA
| |
Collapse
|
6
|
Ding X, Zhou J, Li X, Blas K, Liu G, Wang Y, Qin A, Chinnaiyan P, Yan D, Stevens C, Grills I, Kabolizadeh P. Improving dosimetric outcome for hippocampus and cochlea sparing whole brain radiotherapy using spot-scanning proton arc therapy. Acta Oncol 2019; 58:483-490. [PMID: 30632851 DOI: 10.1080/0284186x.2018.1555374] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This feasibility study shows that Spot-scanning Proton Arc therapy (SPArc) is able to significantly reduce the dose to the hippocampus and cochlea compared to both Volumetric Modulated Arc Photon Therapy (VMAT) and the robust optimized Intensity Modulated Proton Therapy (ro-IMPT) plans in whole brain radiotherapy. Furthermore, SPArc not only improves plan robustness but could potentially deliver a treatment as efficient as ro-IMPT when proton system's energy layer switch time is less than 1 s.
Collapse
Affiliation(s)
- Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Kevin Blas
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Yinan Wang
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| |
Collapse
|
7
|
Ye B, Tang Q, Yao J, Gao W. Collision-Free Path Planning and Delivery Sequence Optimization in Noncoplanar Radiation Therapy. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:42-55. [PMID: 29990095 DOI: 10.1109/tcyb.2017.2763682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Radiation therapy is among the top three cancer treatments in current medical services. The novel noncoplanar radiation therapy which claimed the best characteristics in almost all dosimetric properties encountered the challenges of the potential collision and the long time delivering. In this paper, we proposed a brand new scheme which uses a combined method of the collision avoidance path planning based on an improved probability roadmap method (PRM) and the delivery sequence optimization based on a modified genetic algorithm (GA) to solve the problems in noncoplanar radiation therapy. A uniform sampling strategy, an improved connection strategy, and an efficient local planner are introduced to optimize the roadmap result and accelerate the roadmap construction. The GA is improved by the elitist selection, the local search strategy, and the similar substitution strategy to achieve a better performance both in convergence rate and optimal solution. Experiments are carried out on the simulation platform with typical therapy system models. The results show that our proposed methods work well with the radiation therapy system in a compact working area. Collision is avoided and time consumption is reduced. We believe that our proposed algorithms could solve the problems in current radiation therapy and promote their clinic applications.
Collapse
|
8
|
Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treat Rev 2018; 72:56-64. [PMID: 30530009 DOI: 10.1016/j.ctrv.2018.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The depth-dose distribution of a proton beam, materialized by the Bragg peak makes it an attractive radiation modality as it reduces exposure of healthy tissues to radiations, compared with photon therapy Prominent indications, based on a long-standing experience are: intraocular melanomas, low-grade skull-base and spinal canal malignancies. However, many others potential indications are under investigations such as the benign morbid conditions that are compatible with an extended life-expectancy: low grade meningiomas, paragangliomas, pituitary adenomas, neurinomas craniopharyngioma or recurrent pleomorphic adenomas. MATERIALS Given the radiation-induced risk of secondary cancer and the potential neurocognitive and functional alteration with photonic radiotherapy, we systematically analyzed the existing clinical literature about the use of proton therapy as an irradiation modality for cervical or intracranial benign tumors. The aim of this review was to report clinical outcomes of adult patients with benign intracranial or cervical tumors treated with proton therapy and to discuss about potential advantages of proton therapy over intensity modulated radiotherapy or radiosurgery. RESULTS Twenty-four studies were included. There was no randomized studies. Most studies dealt with low grade meningiomas (n = 9). Studies concerning neurinoma (n = 4), pituitary adenoma (n = 5), paraganglioma (n = 5), or craniopharyngioma (n = 1) were fewer. Whatever the indication, long term local control was systematically higher than 90% and equivalent to series with conventional radiotherapy. CONCLUSION Proton-therapy for treatment of adult benign intracranial and cervical tumors is safe. Randomized or prospective cohorts with long term cognitive evaluations are needed to assess the real place of proton-therapy in the treatment of adults benign head and neck tumors.
Collapse
|
9
|
Ding X, Li X, Qin A, Zhou J, Yan D, Stevens C, Krauss D, Kabolizadeh P. Have we reached proton beam therapy dosimetric limitations? - A novel robust, delivery-efficient and continuous spot-scanning proton arc (SPArc) therapy is to improve the dosimetric outcome in treating prostate cancer. Acta Oncol 2018; 57:435-437. [PMID: 28774218 DOI: 10.1080/0284186x.2017.1358463] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Daniel Krauss
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | | |
Collapse
|
10
|
Li X, Kabolizadeh P, Yan D, Qin A, Zhou J, Hong Y, Guerrero T, Grills I, Stevens C, Ding X. Improve dosimetric outcome in stage III non-small-cell lung cancer treatment using spot-scanning proton arc (SPArc) therapy. Radiat Oncol 2018; 13:35. [PMID: 29486782 PMCID: PMC6389253 DOI: 10.1186/s13014-018-0981-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/20/2018] [Indexed: 12/25/2022] Open
Abstract
Background To evaluate spot-scanning proton arc therapy (SPArc) and multi-field robust optimized intensity modulated proton therapy (RO-IMPT) in treating stage III non-small-cell lung cancer (NSCLC) patients. Methods Two groups of stage IIIA or IIIB NSCLC patients (group 1: eight patients with tumor motion less than 5 mm; group 2: six patients with tumor motion equal to or more than 5 mm) were re-planned with SPArc and RO-IMPT. Both plans were generated using robust optimization to achieve an optimal coverage with 99% of internal target volume (ITV) receiving 66 Gy (RBE) in 33 fractions. The dosimetric results and plan robustness were compared for both groups. The interplay effect was evaluated based on the ITV coverage by single-fraction 4D dynamic dose. Total delivery time was simulated based on a full gantry rotation with energy-layer-switching-time (ELST) from 0.2 to 4 s. Statistical analysis was also evaluated via Wilcoxon signed rank test. Results Both SPArc and RO-IMPT plans achieved similar robust target volume coverage for all patients, while SPArc significantly reduced the doses to critical structures as well as the interplay effect. Specifically, compared to RO-IMPT, SPArc reduced the average integral dose by 7.4% (p = 0.001), V20, and mean lung dose by an average of 3.2% (p = 0.001) and 1.6 Gy (RBE) (p = 0.001), the max dose to cord by 4.6 Gy (RBE) (p = 0.04), and the mean dose to heart and esophagus by 0.7 Gy (RBE) (p = 0.01) and 1.7 Gy (RBE) (p = 0.003) respectively. The average total estimated delivery time was 160.1 s, 213.8 s, 303.4 s, 840.8 s based on ELST of 0.2 s, 0.5 s, 1 s, and 4 s for SPArc plans, compared with the respective values of 182.0 s (p = 0.001), 207.9 s (p = 0.22), 250.9 s (p = 0.001), 509.4 s (p = 0.001) for RO-IMPT plans. Hence, SPArc plans could be clinically feasible when using a shorter ELST. Conclusions This study has indicated that SPArc could further improve the dosimetric results in patients with locally advanced stage NSCLC and potentially be implemented into routine clinical practice.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA.
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Ye Hong
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA.
| |
Collapse
|
11
|
Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: Real-time MRI-guided proton therapy. Med Phys 2017; 44:e77-e90. [PMID: 28547820 DOI: 10.1002/mp.12371] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
Abstract
With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites.
Collapse
Affiliation(s)
- Bradley M Oborn
- Illawarra Cancer Care Centre (ICCC), Wollongong, NSW, 2500, Australia.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, 2500, Australia
| | | | - Peter E Metcalfe
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, 2500, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Stuart Crozier
- School of Information Technology and Electric Engineering, University of Queensland, QLD, 4072, Australia
| | - Radhe Mohan
- Department of Radiation Oncology, MD Anderson, Houston, TX, 77030, USA
| | - Paul J Keall
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,Sydney Medical School, University of Sydney, NSW, 2006, Australia
| |
Collapse
|