1
|
Smith BR, Hyer DE. The LET enhancement of energy-specific collimation in pencil beam scanning proton therapy. J Appl Clin Med Phys 2025; 26:e14477. [PMID: 39644507 PMCID: PMC11712952 DOI: 10.1002/acm2.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE To computationally characterize the LET distribution during dynamic collimation in PBS and quantify its impact on the resultant dose distribution. METHODS Monte Carlo simulations using Geant4 were used to model the production of low-energy proton scatter produced in the collimating components of a novel PBS collimator. Custom spectral tallies were created to quantify the energy, track- and dose-averaged LET resulting from individual beamlet and composite fields simulated from a model of the IBA dedicated nozzle system. The composite dose distributions were optimized to achieve a uniform physical dose coverage of a cubical and pyramidal target, and the resulting dose-average LET distributions were calculated for uncollimated and collimated PBS deliveries and used to generate RBE-weighted dose distributions. RESULTS For collimated beamlets, the scattered proton energy fluence is strongly dependent on collimator position relative to the central axis of the beamlet. When delivering a uniform profile, the distribution of dose-average LET was nearly identical within the target and increased between 1 and2 keV / μ m $2 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm surrounding the target. Dynamic collimation resulted in larger dose-average LET changes: increasing the dose-average LET between 1 and3 keV / μ m $3 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm of a pyramidal target while reducing the dose-average LET outside this margin by as much as10 keV / μ m $10 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ . Biological dose distributions are improved with energy-specific collimation in reducing the lateral penumbra. CONCLUSION The presence of energy-specific collimation in PBS can lead to dose-average LET changes relative to an uncollimated delivery. In some clinical situations, the placement and application of energy-specific collimation may require additional planning considerations based on its reduction to the lateral penumbra and increase in high-dose conformity. Future applications may embody these unique dosimetric characteristics to redirect high-LET portions of a collimated proton beamlet from healthy tissues while enhancing the dose-average LET distribution within target.
Collapse
Affiliation(s)
- Blake R. Smith
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Bennett LC, Hyer DE, Vu J, Patwardhan K, Erhart K, Gutierrez AN, Pons E, Jensen E, Ubau M, Zapata J, Wroe A, Wake K, Nelson NP, Culberson WS, Smith BR, Hill PM, Flynn RT. Patient-specific quality assurance of dynamically-collimated proton therapy treatment plans. Med Phys 2024; 51:5901-5910. [PMID: 38977285 DOI: 10.1002/mp.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The dynamic collimation system (DCS) provides energy layer-specific collimation for pencil beam scanning (PBS) proton therapy using two pairs of orthogonal nickel trimmer blades. While excellent measurement-to-calculation agreement has been demonstrated for simple cube-shaped DCS-trimmed dose distributions, no comparison of measurement and dose calculation has been made for patient-specific treatment plans. PURPOSE To validate a patient-specific quality assurance (PSQA) process for DCS-trimmed PBS treatment plans and evaluate the agreement between measured and calculated dose distributions. METHODS Three intracranial patient cases were considered. Standard uncollimated PBS and DCS-collimated treatment plans were generated for each patient using the Astroid treatment planning system (TPS). Plans were recalculated in a water phantom and delivered at the Miami Cancer Institute (MCI) using an Ion Beam Applications (IBA) dedicated nozzle system and prototype DCS. Planar dose measurements were acquired at two depths within low-gradient regions of the target volume using an IBA MatriXX ion chamber array. RESULTS Measured and calculated dose distributions were compared using 2D gamma analysis with 3%/3 mm criteria and low dose threshold of 10% of the maximum dose. Median gamma pass rates across all plans and measurement depths were 99.0% (PBS) and 98.3% (DCS), with a minimum gamma pass rate of 88.5% (PBS) and 91.2% (DCS). CONCLUSIONS The PSQA process has been validated and experimentally verified for DCS-collimated PBS. Dosimetric agreement between the measured and calculated doses was demonstrated to be similar for DCS-collimated PBS to that achievable with noncollimated PBS.
Collapse
Affiliation(s)
- Laura C Bennett
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Justin Vu
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | - Kaustubh Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Eduardo Pons
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Eric Jensen
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Manual Ubau
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Julio Zapata
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Andrew Wroe
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Karsten Wake
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Kong W, Huiskes M, Habraken SJM, Astreinidou E, Rasch CRN, Heijmen BJM, Breedveld S. Reducing the lateral dose penumbra in IMPT by incorporating transmission pencil beams. Radiother Oncol 2024; 198:110388. [PMID: 38897315 DOI: 10.1016/j.radonc.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission ('shoot through') pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams ('IMPT&TPB') could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams. APPROACH Our system for automated multi-criteria IMPT plan optimisation was extended for combined optimisation of BPs and TPBs. The system generates for each patient a Pareto-optimal plan using a generic 'wish-list' with prioritised planning objectives and hard constraints. For eight nasopharynx cancer patients (NPC) and eight oropharynx cancer (OPC) patients, the IMPT&TPB plan was compared to the competing conventional IMPT plan with only Bragg peaks, which was generated with the same optimiser, but without transmission pencil beams. MAIN RESULTS Clinical OAR and target constraints were met in all plans. By allowing transmission pencil beams in the optimisation, on average 14 of the 25 investigated OAR plan parameters significantly improved for NPC, and 9 of the 17 for OPC, while only one OPC parameter showed small but significant deterioration. Non-significant differences were found in the remaining parameters. In NPC, cochlea Dmean reduced by up to 17.5 Gy and optic nerve D2% by up to 11.1 Gy. CONCLUSION Compared to IMPT, IMPT&TPB resulted in comparable target coverage with overall superior OAR sparing, the latter originating from steeper dose fall-offs close to OARs.
Collapse
Affiliation(s)
- W Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - S J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - C R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Tominaga Y, Suga M, Takeda M, Yamamoto Y, Akagi T, Kato T, Tokumaru S, Yamamoto M, Oita M. Dose-volume comparisons of proton therapy for pencil beam scanning with and without multi-leaf collimator and passive scattering in patients with lung cancer. Med Dosim 2023; 49:13-18. [PMID: 37940436 DOI: 10.1016/j.meddos.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
This study evaluated the dose distributions of proton pencil beam scanning (PBS) with/without a multileaf collimator (MLC) compared to passive scattering (PS) for stage I/II lung cancers. Collimated/uncollimated (PBS+/PBS-) and PS plans were created for 20 patients. Internal-clinical-target-volumes (ICTVs) and planning-target-volumes (PTVs) with a 5 mm margin were defined on the gated CTs. Organs-at-risk (OARs) are defined as the normal lungs, spinal cord, esophagus, and heart. The prescribed dose was 66 Gy relative-biological-effectiveness (RBE) in 10 fractions at the isocenter and 50% volume of the ICTVs for the PS and PBS, respectively. We compared the target and OAR dose statistics from the dose volume histograms. The PBS+ group had a significantly better mean PTV conformity index than the PBS- and PS groups. The mean dose sparing for PBS+ was better than those for PBS- and PS. Only the normal lung doses of PBS- were worse than those of PS. The overall performance of the OAR sparing was in the order of PBS+, PBS-, and PS. The PBS+ plan showed significantly better target homogeneity and OAR sparing than the PBS- and PS plans. PBS requires collimating systems to treat lung cancers with the most OAR sparing while maintaining the target coverage.
Collapse
Affiliation(s)
- Yuki Tominaga
- Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Konohana-ku, Osaka 554-0022, Japan.
| | - Masaki Suga
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Mikuni Takeda
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Yuki Yamamoto
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Takashi Akagi
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Takahiro Kato
- Depertment of Radiological Sciences, School of Health Sciences, Fukushima, Medical University, Fukushima 960-1295, Japan; Depertment of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Koriyama, Fukushima 963-8052, Japan
| | - Sunao Tokumaru
- Hyogo Ion Beam Medical Center, Tatsuno, Hyogo 679-5165, Japan
| | - Michinori Yamamoto
- Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Konohana-ku, Osaka 554-0022, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Bennett LC, Hyer DE, Erhart K, Nelson NP, Culberson WS, Smith BR, Hill PM, Flynn RT. PETRA: A pencil beam trimming algorithm for analytical proton therapy dose calculations with the dynamic collimation system. Med Phys 2023; 50:7263-7280. [PMID: 37370239 PMCID: PMC10751389 DOI: 10.1002/mp.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.
Collapse
Affiliation(s)
- Laura C. Bennett
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA
| | - Daniel E. Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kevin Erhart
- .decimal LLC, 121 Central Park Pl, Sanford, FL, 32771, USA
| | - Nicholas P. Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Wesley S. Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Blake R. Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Patrick M. Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ryan T. Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
6
|
Nelson NP, Culberson WS, Hyer DE, Geoghegan TJ, Patwardhan KA, Smith BR, Flynn RT, Gutiérrez AN, Boland T, Hill PM. Integration and dosimetric validation of a dynamic collimation system for pencil beam scanning proton therapy. Biomed Phys Eng Express 2023; 9:10.1088/2057-1976/ad02ff. [PMID: 37832529 PMCID: PMC11128250 DOI: 10.1088/2057-1976/ad02ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.
Collapse
Affiliation(s)
- Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Kaustubh A Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 331765, United States of America
| | | | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI, 53792, United States of America
| |
Collapse
|
7
|
Miyata J, Tominaga Y, Kondo K, Sonoda Y, Hanazawa H, Sakai M, Itasaka S, Oita M, Kuroda M. Dosimetric comparison of pencil beam scanning proton therapy with or without multi-leaf collimator versus volumetric-modulated arc therapy for treatment of malignant glioma. Med Dosim 2023; 48:105-112. [PMID: 36914455 DOI: 10.1016/j.meddos.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/14/2023]
Abstract
This study aimed to examine the dosimetric effect of intensity-modulated proton therapy (IMPT) with a multi-leaf collimator (MLC) in treating malignant glioma. We compared the dose distribution of IMPT with or without MLC (IMPTMLC+ or IMPTMLC-, respectively) using pencil beam scanning and volumetric-modulated arc therapy (VMAT) in simultaneous integrated boost (SIB) plans for 16 patients with malignant gliomas. High- and low-risk target volumes were assessed using D2%, V90%, V95%, homogeneity index (HI), and conformity index (CI). Organs at risk (OARs) were evaluated using the average dose (Dmean) and D2%. Furthermore, the dose to the normal brain was evaluated using from V5Gy to V40Gy at 5 Gy intervals. There were no significant differences among all techniques regarding V90%, V95%, and CI for the targets. HI and D2% for IMPTMLC+ and IMPTMLC- were significantly superior to those for VMAT (p < 0.01). The Dmean and D2% of all OARs for IMPTMLC+ were equivalent or superior to those of other techniques. Regarding the normal brain, there was no significant difference in V40Gy among all techniques whereas V5Gy to V35Gy in IMPTMLC+ were significantly smaller than those in IMPTMLC- (with differences ranging from 0.45% to 4.80%, p < 0.05) and VMAT (with differences ranging from 6.85% to 57.94%, p < 0.01). IMPTMLC+ could reduce the dose to OARs, while maintaining target coverage compared to IMPTMLC- and VMAT in treating malignant glioma.
Collapse
Affiliation(s)
- Junya Miyata
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan; Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yuki Tominaga
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan; Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Osaka, Osaka, Japan
| | - Kazuto Kondo
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yasuaki Sonoda
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Hideki Hanazawa
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Mami Sakai
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Satoshi Itasaka
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan.
| | - Masahiro Kuroda
- Graduate School of Health Sciences, Okayama University, Okayama, Okayama, Japan
| |
Collapse
|
8
|
Nelson NP, Culberson WS, Hyer DE, Geoghegan TJ, Patwardhan KA, Smith BR, Flynn RT, Yu J, Gutiérrez AN, Hill PM. Dosimetric delivery validation of dynamically collimated pencil beam scanning proton therapy. Phys Med Biol 2023; 68:055003. [PMID: 36706460 PMCID: PMC9940016 DOI: 10.1088/1361-6560/acb6cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.
Collapse
Affiliation(s)
- Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America,Author to whom any correspondence should be addressed
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Kaustubh A Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI, 53792, United States of America
| |
Collapse
|
9
|
Behrends C, Bäumer C, Verbeek NG, Wulff J, Timmermann B. Optimization of proton pencil beam positioning in collimated fields. Med Phys 2023; 50:2540-2551. [PMID: 36609847 DOI: 10.1002/mp.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The addition of static or dynamic collimator systems to the pencil beam scanning delivery technique increases the number of options for lateral field shaping. The collimator shape needs to be optimized together with the intensity modulation of spots. PURPOSE To minimize the proton field's lateral penumbra by investigating the fundamental relations between spot and collimating aperture edge position. METHODS Analytical approaches describing the effect of spot position on the resulting spot profile are presented. The theoretical description is then compared with Monte Carlo simulations in TOPAS and in the RayStation treatment planning system, as well as with radiochromic film measurements at a clinical proton therapy facility. In the model, one single spot profile is analyzed for various spot positions in air. Further, irradiation setups in water with different energies, the combination with a range shifter, and two-dimensional proton fields were investigated in silico. RESULTS The further the single spot is placed beyond the collimating aperture edge ('overscanning'), the sharper the relative lateral dose fall-off and thus the lateral penumbra. Overscanning up to 5 mm $5\,\text{mm}$ reduced the lateral penumbra by about 20% on average after a propagation of 13 cm $13\,\text{cm}$ in air. This benefit from overscanning is first predicted by the analytical proofs and later verified by simulations and measurements. Corresponding analyses in water confirm the benefit in lateral penumbra with spot position optimization as observed theoretically and in air. The combination of spot overscanning with fluence modulation facilitated an additional improvement. CONCLUSIONS The lateral penumbra of single spots in collimated scanned proton fields can be improved by the method of spot overscanning. This suggests a better sparing of proximal organs at risk in smaller water depths at higher energies, especially in the plateau of the depth dose distribution. All in all, spot overscanning in collimated scanned proton fields offers particular potential in combination with techniques such as fluence modulation or dynamic collimation for optimizing the lateral penumbra to spare normal tissue.
Collapse
Affiliation(s)
- Carina Behrends
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nico Gerd Verbeek
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
10
|
A novel optimization algorithm for enabling dynamically collimated proton arc therapy. Sci Rep 2022; 12:21731. [PMID: 36526670 PMCID: PMC9758145 DOI: 10.1038/s41598-022-25774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The advent of energy-specific collimation in pencil beam scanning (PBS) proton therapy has led to an improved lateral dose conformity for a variety of treatment sites, resulting in better healthy tissue sparing. Arc PBS delivery has also been proposed to enhance high-dose conformity about the intended target, reduce skin toxicity, and improve plan robustness. The goal of this work was to determine if the combination of proton arc and energy-specific collimation can generate better dose distributions as a logical next step to maximize the dosimetric advantages of proton therapy. Plans were optimized using a novel DyNamically collimated proton Arc (DNA) genetic optimization algorithm that was designed specifically for the application of proton arc therapy. A treatment planning comparison study was performed by generating an uncollimated two-field intensity modulated proton therapy and partial arc treatments and then replanning these treatments using energy-specific collimation as delivered by a dynamic collimation system, which is a novel collimation technology for PBS. As such, we refer to this novel treatment paradigm as Dynamically Collimated Proton Arc Therapy (DC-PAT). Arc deliveries achieved a superior target conformity and improved organ at risk (OAR) sparing relative to their two-field counterparts at the cost of an increase to the low-dose, high-volume region of the healthy brain. The incorporation of DC-PAT using the DNA optimizer was shown to further improve the tumor dose conformity. When compared to the uncollimated proton arc treatments, the mean dose to the 10mm of surrounding healthy tissue was reduced by 11.4% with the addition of collimation without meaningfully affecting the maximum skin dose (less than 1% change) relative to a multi-field treatment. In this case study, DC-PAT could better spare specific OARs while maintaining better target coverage compared to uncollimated proton arc treatments. While this work presents a proof-of-concept integration of two emerging technologies, the results are promising and suggest that the addition of these two techniques can lead to superior treatment plans warranting further development.
Collapse
|
11
|
Tominaga Y, Sakurai Y, Miyata J, Harada S, Akagi T, Oita M. Validation of pencil beam scanning proton therapy with multi-leaf collimator calculated by a commercial Monte Carlo dose engine. J Appl Clin Med Phys 2022; 23:e13817. [PMID: 36420959 PMCID: PMC9797166 DOI: 10.1002/acm2.13817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/10/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate the clinical beam commissioning results and lateral penumbra characteristics of our new pencil beam scanning (PBS) proton therapy using a multi-leaf collimator (MLC) calculated by use of a commercial Monte Carlo dose engine. Eighteen collimated uniform dose plans for cubic targets were optimized by the RayStation 9A treatment planning system (TPS), varying scan area, modulation widths, measurement depths, and collimator angles. To test the patient-specific measurements, we also created and verified five clinically realistic PBS plans with the MLC, such as the liver, prostate, base-of-skull, C-shape, and head-and-neck. The verification measurements consist of the depth dose (DD), lateral profile (LP), and absolute dose (AD). We compared the LPs and ADs between the calculation and measurements. For the cubic plans, the gamma index pass rates (γ-passing) were on average 96.5% ± 4.0% at 3%/3 mm for the DD and 95.2% ± 7.6% at 2%/2 mm for the LP. In several LP measurements less than 75 mm depths, the γ-passing deteriorated (increased the measured doses) by less than 90% with the scattering such as the MLC edge and range shifter. The deteriorated γ-passing was satisfied by more than 90% at 2%/2 mm using uncollimated beams instead of collimated beams except for three planes. The AD differences and the lateral penumbra width (80%-20% distance) were within ±1.9% and ± 1.1 mm, respectively. For the clinical plan measurements, the γ-passing of LP at 2%/2 mm and the AD differences were 97.7% ± 4.2% on average and within ±1.8%, respectively. The measurements were in good agreement with the calculations of both the cubic and clinical plans inserted in the MLC except for LPs less than 75 mm regions of some cubic and clinical plans. The calculation errors in collimated beams can be mitigated by substituting uncollimated beams.
Collapse
Affiliation(s)
- Yuki Tominaga
- Department of Radiotherapy, Medical Co. HakuhokaiOsaka Proton Therapy ClinicOsakaJapan,Division of Radiological TechnologyGraduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| | - Yusuke Sakurai
- Department of Radiotherapy, Medical Co. HakuhokaiOsaka Proton Therapy ClinicOsakaJapan
| | - Junya Miyata
- Division of Radiological TechnologyGraduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan,Department of Radiological technologyKurashiki Central HospitalOkayamaJapan
| | | | | | - Masataka Oita
- Division of Radiological TechnologyGraduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| |
Collapse
|
12
|
Zientara N, Giles E, Le H, Short M. A scoping review of patient selection methods for proton therapy. J Med Radiat Sci 2022; 69:108-121. [PMID: 34476905 PMCID: PMC8892419 DOI: 10.1002/jmrs.540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 01/14/2023] Open
Abstract
The aim was to explore various national and international clinical decision-making tools and dose comparison methods used for selecting cancer patients for proton versus X-ray radiation therapy. To address this aim, a literature search using defined scoping review methods was performed in Medline and Embase databases as well as grey literature. Articles published between 1 January 2015 and 4 August 2020 and those that clearly stated methods of proton versus X-ray therapy patient selection and those published in English were eligible for inclusion. In total, 321 studies were identified of which 49 articles met the study's inclusion criteria representing 13 countries. Six different clinical decision-making tools and 14 dose comparison methods were identified, demonstrating variability within countries and internationally. Proton therapy was indicated for all paediatric patients except those with lymphoma and re-irradiation where individualised model-based selection was required. The most commonly reported patient selection tools included the Normal Tissue Complication Probability model, followed by cost-effectiveness modelling and dosimetry comparison. Model-based selection methods were most commonly applied for head and neck clinical indications in adult cohorts (48% of studies). While no 'Gold Standard' currently exists for proton therapy patient selection with variations evidenced globally, some of the patient selection methods identified in this review can be used to inform future practice in Australia. As literature was not identified from all countries where proton therapy centres are available, further research is needed to evaluate patient selection methods in these jurisdictions for a comprehensive overview.
Collapse
Affiliation(s)
- Nicole Zientara
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Liverpool Cancer Therapy CentreLiverpool HospitalSydneyNew South WalesAustralia
| | - Eileen Giles
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Hien Le
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Radiation OncologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Michala Short
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Nelson NP, Culberson WS, Hyer DE, Smith BR, Flynn RT, Hill PM. Investigating aperture-based approximations to model a focused dynamic collimation system for pencil beam scanning proton therapy. Biomed Phys Eng Express 2022; 8:10.1088/2057-1976/ac525f. [PMID: 35130520 PMCID: PMC8917788 DOI: 10.1088/2057-1976/ac525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022]
Abstract
Purpose. The Dynamic Collimation System (DCS) is an energy layer-specific collimation device designed to reduce the lateral penumbra in pencil beam scanning proton therapy. The DCS consists of two pairs of nickel trimmers that rapidly and independently move and rotate to intercept the scanning proton beam and an integrated range shifter to treat targets less than 4 cm deep. This work examines the validity of a single aperture approximation to model the DCS, a commonly used approximation in commercial treatment planning systems, as well as higher-order aperture-based approximations for modeling DCS-collimated dose distributions.Methods. An experimentally validated TOPAS/Geant4-based Monte Carlo model of the DCS integrated with a beam model of the IBA pencil beam scanning dedicated nozzle was used to simulate DCS- and aperture-collimated 100 MeV beamlets and composite treatment plans. The DCS was represented by three different aperture approximations: a single aperture placed halfway between the upper and lower trimmer planes, two apertures located at the upper and lower trimmer planes, and four apertures, located at both the upstream and downstream faces of each pair of trimmers. Line profiles and three-dimensional regions of interest were used to evaluate the validity and limitations of the aperture approximations investigated.Results. For pencil beams without a range shifter, minimal differences were observed between the DCS and single aperture approximation. For range shifted beamlets, the single aperture approximation yielded wider penumbra widths (up to 18%) in the X-direction and sharper widths (up to 9.4%) in the Y-direction. For the example treatment plan, the root-mean-square errors (RMSEs) in an overall three-dimensional region of interest were 1.7%, 1.3%, and 1.7% for the single aperture, two aperture, and four aperture models, respectively. If the region of interest only encompasses the lateral edges outside of the target, the resulting RMSEs were 1.7%, 1.1%, and 0.5% single aperture, two aperture, and four aperture models, respectively.Conclusions. Monte Carlo simulations of the DCS demonstrated that a single aperture approximation is sufficient for modeling pristine fields at the Bragg depth while range shifted fields require a higher-order aperture approximation. For the treatment plan considered, the double aperture model performed the best overall, however, the four-aperture model most accurately modeled the lateral field edges at the expense of increased dose differences proximal to and within the target.
Collapse
Affiliation(s)
- Nicholas P. Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705
| | - Wesley S. Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705
| | - Daniel E. Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242
| | - Blake R. Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242
| | - Ryan T. Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242
| | - Patrick M. Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI, 53792
| |
Collapse
|
14
|
Smith BR, M S NPN, M S TJG, M S KAP, Hill PM, Yu J, Gutiérrez AN, Md BGA, Hyer DE. The dosimetric enhancement of GRID profiles using an external collimator in pencil beam scanning proton therapy. Med Phys 2022; 49:2684-2698. [PMID: 35120278 PMCID: PMC9007854 DOI: 10.1002/mp.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beam line to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA Dedicated Nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA Universal and Dedicated nozzles. RESULTS Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1 mm gamma criteria with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2 mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a tradeoff between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| | - Nicholas P Nelson M S
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705
| | | | | | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176
| | - Bryan G Allen Md
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| |
Collapse
|
15
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
16
|
Fukumitsu N, Yamashita T, Mima M, Demizu Y, Suzuki T, Soejima T. Dose distribution effects of spot-scanning proton beam therapy equipped with a multi-leaf collimator for pediatric brain tumors. Oncol Lett 2021; 22:635. [PMID: 34295382 PMCID: PMC8273856 DOI: 10.3892/ol.2021.12896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/15/2021] [Indexed: 11/06/2022] Open
Abstract
The present study simulated the effect of spot-scanning proton beam therapy (PBT) performed using a device equipped with a multi-leaf collimator (MLC) to calculate the dose distribution. Simulation studies using 18 pediatric patients with brain tumors in the posterior fossa were performed. Treatment plans were created for the MLC at different stages: Fully open (initial plan), fully closed to allow an irradiated area extending to 15 mm from the clinical target volume (CTV) (15-mm plan), or closing only the leaves where an organ at risk (OAR) overlapped with a border at 10 or 5 mm from the CTV (10- and 5-mm plans, respectively). The mean dose values for the brainstem, cervical cord, brain and cochlea in all MLC closure plans decreased as the MLC was closed (P=9.9×10−10, P=1.3×10−17, P=2.1×10−16 and P=2.0×10−5, respectively). The maximum dose (Dmax) values of the cervical cord and cochlea in all MLC closure plans were also decreased as the MLC was closed (P=3.0×10−4 and P=1.1×10−5, respectively). The dose to the CTV was almost unchanged. In 10 patients, the Dmax of the brain in all MLC-closure plans was higher than that of the initial plan, but the maximum increase was only 0.8 gray relative biological effectiveness [Gy(RBE)]. In conclusion, the existing MLC installed in the treatment device can be used to decrease the OAR dose significantly using spot-scanning PBT without a large capital investment. The dose from the scattered particles was small.
Collapse
Affiliation(s)
- Nobuyoshi Fukumitsu
- Department of Radiation Oncology, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| | - Tomohiro Yamashita
- Division of Medical Physics, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| | - Masayuki Mima
- Department of Radiation Oncology, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| | - Toshinori Soejima
- Department of Radiation Oncology, Kobe Proton Center, Kobe, Hyōgo 650-0047, Japan
| |
Collapse
|
17
|
Hyer DE, Bennett LC, Geoghegan TJ, Bues M, Smith BR. Innovations and the Use of Collimators in the Delivery of Pencil Beam Scanning Proton Therapy. Int J Part Ther 2021; 8:73-83. [PMID: 34285937 PMCID: PMC8270095 DOI: 10.14338/ijpt-20-00039.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer–specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. Materials and Methods The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. Results Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. Conclusion The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.
Collapse
Affiliation(s)
- Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Laura C Bennett
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Bäumer C, Plaude S, Khalil DA, Geismar D, Kramer PH, Kröninger K, Nitsch C, Wulff J, Timmermann B. Clinical Implementation of Proton Therapy Using Pencil-Beam Scanning Delivery Combined With Static Apertures. Front Oncol 2021; 11:599018. [PMID: 34055596 PMCID: PMC8149965 DOI: 10.3389/fonc.2021.599018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proton therapy makes use of the favorable depth-dose distribution with its characteristic Bragg peak to spare normal tissue distal of the target volume. A steep dose gradient would be desired in lateral dimensions, too. The widespread spot scanning delivery technique is based, however, on pencil-beams with in-air spot full-widths-at-half-maximum of typically 1 cm or more. This hampers the sparing of organs-at-risk if small-scale structures adjacent to the target volume are concerned. The trimming of spot scanning fields with collimating apertures constitutes a simple measure to increase the transversal dose gradient. The current study describes the clinical implementation of brass apertures in conjunction with the pencil-beam scanning delivery mode at a horizontal, clinical treatment head based on commercial hardware and software components. Furthermore, clinical cases, which comprised craniopharyngiomas, re-irradiations and ocular tumors, were evaluated. The dosimetric benefits of 31 treatment plans using apertures were compared to the corresponding plans without aperture. Furthermore, an overview of the radiation protection aspects is given. Regarding the results, robust optimization considering range and setup uncertainties was combined with apertures. The treatment plan optimizations followed a single-field uniform dose or a restricted multi-field optimization approach. Robustness evaluation was expanded to account for possible deviations of the center of the pencil-beam delivery and the mechanical center of the aperture holder. Supplementary apertures improved the conformity index on average by 15.3%. The volume of the dose gradient surrounding the PTV (evaluated between 80 and 20% dose levels) was decreased on average by 17.6%. The mean dose of the hippocampi could be reduced on average by 2.9 GyRBE. In particular cases the apertures facilitated a sparing of an organ-at-risk, e.g. the eye lens or the brainstem. For six craniopharyngioma cases the inclusion of apertures led to a reduction of the mean dose of 1.5 GyRBE (13%) for the brain and 3.1 GyRBE (16%) for the hippocampi.
Collapse
Affiliation(s)
- Christian Bäumer
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Physics, TU Dortmund University, Dortmund, Germany
| | - Sandija Plaude
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Dalia Ahmad Khalil
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Dirk Geismar
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Paul-Heinz Kramer
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Kevin Kröninger
- Faculty of Physics, TU Dortmund University, Dortmund, Germany
| | | | - Jörg Wulff
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
19
|
Nelson NP, Culberson WS, Hyer DE, Geoghegan TJ, Patwardhan KA, Smith BR, Flynn RT, Yu J, Rana S, Gutiérrez AN, Hill PM. Development and validation of the Dynamic Collimation Monte Carlo simulation package for pencil beam scanning proton therapy. Med Phys 2021; 48:3172-3185. [PMID: 33740253 DOI: 10.1002/mp.14846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this work was to develop and experimentally validate a Dynamic Collimation Monte Carlo (DCMC) simulation package specifically designed for the simulation of collimators in pencil beam scanning proton therapy (PBS-PT). The DCMC package was developed using the TOPAS Monte Carlo platform and consists of a generalized PBS source model and collimator component extensions. METHODS A divergent point-source model of the IBA dedicated nozzle (DN) at the Miami Cancer Institute (MCI) was created and validated against on-axis commissioning measurements taken at MCI. The beamline optics were mathematically incorporated into the source to model beamlet deflections in the X and Y directions at the respective magnet planes. Off-axis measurements taken at multiple planes in air were used to validate both the off-axis spot size and divergence of the source model. The DCS trimmers were modeled and incorporated as TOPAS geometry extensions that linearly translate and rotate about the bending magnets. To validate the collimator model, a series of integral depth dose (IDD) and lateral profile measurements were acquired at MCI and used to benchmark the DCMC performance for modeling both pristine and range shifted beamlets. The water equivalent thickness (WET) of the range shifter was determined by quantifying the shift in the depth of the 80% dose point distal to the Bragg peak between the range shifted and pristine uncollimated beams. RESULTS A source model of the IBA DN system was successfully commissioned against on- and off-axis IDD and lateral profile measurements performed at MCI. The divergence of the source model was matched through an optimization of the source-to-axis distance and comparison against in-air spot profiles. The DCS model was then benchmarked against collimated IDD and in-air and in-phantom lateral profile measurements. Gamma analysis was used to evaluate the agreement between measured and simulated lateral profiles and IDDs with 1%/1 mm criteria and a 1% dose threshold. For the pristine collimated beams, the average 1%/1 mm gamma pass rates across all collimator configurations investigated were 99.8% for IDDs and 97.6% and 95.2% for in-air and in-phantom lateral profiles. All range shifted collimated IDDs passed at 100% while in-air and in-phantom lateral profiles had average pass rates of 99.1% and 99.8%, respectively. The measured and simulated WET of the polyethylene range shifter was determined to be 40.9 and 41.0 mm, respectively. CONCLUSIONS We have developed a TOPAS-based Monte Carlo package for modeling collimators in PBS-PT. This package was then commissioned to model the IBA DN system and DCS located at MCI using both uncollimated and collimated measurements. Validation results demonstrate that the DCMC package can be used to accurately model other aspects of a DCS implementation via simulation.
Collapse
Affiliation(s)
- Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kaustubh A Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA
| | - Suresh Rana
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| |
Collapse
|
20
|
Grewal HS, Ahmad S, Jin H. Characterization of penumbra sharpening and scattering by adaptive aperture for a compact pencil beam scanning proton therapy system. Med Phys 2021; 48:1508-1519. [PMID: 33580550 DOI: 10.1002/mp.14771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To quantitatively access penumbra sharpening and scattering by adaptive aperture (AA) under various beam conditions and clinical cases for a Mevion S250i compact pencil beam scanning proton therapy system. METHODS First, in-air measurements were performed using a scintillation detector for single spot profile and lateral penumbra for five square field sizes (3 × 3 to 18 × 18 cm2 ), three energies (33.04, 147.36, and 227.16 MeV), and three snout positions (5, 15, and 33.6 cm) with Open and AA field. Second, treatment plans were generated in RayStation treatment planning system (TPS) for various combination of target size (3- and 10-cm cube), target depth (5, 10, and 15 cm) and air gap (5-20 cm) for both Open and AA field. These plans were delivered to EDR2 films in the solid water and penumbra reduction by AA was quantified. Third, the effect of the AA scattered protons on the surface dose was studied at 5 mm depth by EDR2 film and the RayStation TPS computation. Finally, dosimetric advantage of AA over Open field was studied for five brain and five prostate cases using the TPS simulation. RESULTS The spot size changed dramatically from 3.8 mm at proton beam energy of 227.15 MeV to 29.4 mm at energy 33.04 MeV. In-air measurements showed that AA substantially reduced the lateral penumbra by 30% to 60%. The EDR2 film measurements in solid water presented the maximum penumbra reduction of 10 to 14 mm depending on the target size. The maximum increase of 25% in field edge dose at 5 mm depth as compared to central axis was observed. The substantial penumbra reduction by AA produced less dose to critical structures for all the prostate and brain cases. CONCLUSIONS Adaptive aperture sharpens the penumbra by factor of two to three depending upon the beam condition. The absolute penumbra reduction with AA was more noticeable for shallower target, smaller target, and larger air gap. The AA-scattered protons contributed to increase in surface dose. Clinically, AA reduced the doses to critical structures.
Collapse
Affiliation(s)
- Hardev S Grewal
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA.,Oklahoma Proton Center, 5901 W Memorial Rd, Oklahoma City, OK, 73142, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA
| | - Hosang Jin
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 800 NE 10th street SCC L100, Oklahoma City, OK, 73104, USA
| |
Collapse
|
21
|
Smith BR, Pankuch M, Hyer DE, Culberson WS. Experimental and Monte Carlo characterization of a dynamic collimation system prototype for pencil beam scanning proton therapy. Med Phys 2021; 47:5343-5356. [PMID: 33411329 DOI: 10.1002/mp.14453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE There has been a growing interest in the development of energy-specific collimators for low-energy pencil beam scanning (PBS) to reduce the lateral penumbra. One particular device that has been the focus of several recent published works is the dynamic collimation system (DCS), which provides energy-specific collimation by intercepting the scanned proton beam as it nears to target edge with a set of orthogonal trimmer blades. While several computational studies have shown that this dynamic collimator can provide additional healthy tissue sparing, there has not been any rigorous experimental work to benchmark the theoretical models used in these initial studies. Therefore, it was the purpose of this work to demonstrate an experimental method that could integrate an experimental prototype with a clinical PBS system and benchmark the Monte Carlo methods that have been used to model the DCS. METHODS An experimental DCS prototype was designed and built in house to actively collimate individual proton beamlets during PBS within a well-characterized experimental setup. Monte Carlo methods were initially used to assess construction tolerances and later benchmarked against measurements, including integral depth dose and lateral asymmetric beamlet profiles. The experimental apparatus and measurement geometry were modeled using MCNP6 benchmarked from measurements performed at the Northwestern Chicago Proton Center. RESULTS Gamma analysis tests were used to evaluate the agreement between the measured and simulated profiles with a strict 1 mm/1% criteria and 5% dose threshold. Excellent agreement was observed between the simulated and measured profiles, which included 1 mm/1% gamma analysis pass rates of at least 100% and 95% for the integral depth dose (IDD) profiles and lateral profiles, respectively. Differences in the relative profile shape were observed experimentally between beamlets collimated on- and off-axis, which was attributed to the partial transmission of the beam through an unfocused collimator. Exposure rates resulting from the activation of the device were monitored with survey meter measurements and were found to agree with Monte Carlo estimates of the exposure rate to within 20%. CONCLUSION A DCS prototype was constructed and integrated into a clinical dose delivery system. While the results of this work are not exhaustive, they demonstrate the effects of beam source divergence, device activation, and beamlet deflection during scanning, which were found to be successfully modeled using Monte Carlo methods and experimentally benchmarked. Excellent agreement was achieved between the simulated and measured lateral spot profiles of collimated beamlets delivered on- and off-axis in PBS. The Monte Carlo models adequately predicted the measured elevated plateau region in the integral depth-dose profiles from the low-energy scatter off the collimators.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Pankuch
- Division of Medical Physics, Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, IL, 60555, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
22
|
Grewal HS, Ahmad S, Jin H. Performance evaluation of adaptive aperture's static and dynamic collimation in a compact pencil beam scanning proton therapy system: A dosimetric comparison study for multiple disease sites. Med Dosim 2020; 46:179-187. [PMID: 33279369 DOI: 10.1016/j.meddos.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022]
Abstract
A compact pencil beam scanning (PBS) proton therapy system, Mevion S250i with Hyperscan, is equipped with adaptive aperture (AA) to collimate the beam with 2 different techniques: Static aperture (SA) and dynamic aperture (DA). SA (single aperture) collimates the outermost contour of the target and DA (multi-layer aperture) collimates each energy layer of the proton beam. This study evaluates dosimetric performance of SA and DA for different disease sites. This study includes 5 disease sites (brain, head and neck (HN), partial breast, lung, and prostate), and 8 patients for each. A total of 80 patient treatment plans (5 sites × 8 patients per site × 2 collimation techniques) were created using 2 to 4 proton beams. Both SA and DA plans were made using the same plan and optimization parameters calculated by a Monte Carlo dose algorithm. Multi-field optimization (MFO) was used for HN treatment plans, whereas treatment plans for the other sites were made with single-field optimization (SFO). All plans were robustly optimized with 3 mm (brain and HN) or 5 mm (breast, lung, and prostate) position uncertainty along with 3.5% range uncertainty. Treatment plans were normalized such that 99% of the clinical target volume (CTV) received 100% of the prescribed dose. Dose volume histogram (DVH) parameters were evaluated for CTV and organs at risk (OARs). The CTV was also evaluated for dose homogeneity, dose conformity, and dose gradient. In general, the DA plan made CTV hotter, while it saved OARs better. DA produced better conformity with sharper dose falloff around CTV, while SA generated better homogenous target coverage. DA decreased Dmax to brainstem (1.2% = [(SA-DA)/DA × 100%]) for brain, Dmax to the spinal cord (137.3%) for HN, D1% of the ipsilateral lung (50.5%) for breast, and Dmax to the spinal cord (74.0%) for lung. The dose reduction in bladder and rectum for prostate plans with DA was less than 2.5%. The DA plans reduced the dose to OARs for all disease sites but escalated the target maximum dose for the same target coverage than the SA plans. The OAR saving and dose escalation depended on CTV size, proximity of the OARs to CTV, and the plan complexity.
Collapse
Affiliation(s)
- Hardev S Grewal
- Department of Radiation Oncology, University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hosang Jin
- Department of Radiation Oncology, University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
23
|
Smith BR, Hyer DE, Culberson WS. An investigation into the robustness of dynamically collimated proton therapy treatments. Med Phys 2020; 47:3545-3553. [PMID: 32338770 DOI: 10.1002/mp.14208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the dosimetric robustness of dynamically collimated proton therapy (DCPT) treatment plans delivered using a dynamic collimation system (DCS) with respect to random uncertainties in beam spot and collimator position as well as systematic offsets in the DCS mounting alignment. This work also demonstrates a technique that can increase plan robustness while preserving target conformity. METHODS Variability in beam spot and collimator positioning can result in changes to a beamlet's dose distribution and incident fluence. The robustness of the DCPT treatment plans was evaluated for three intracranial treatment sites by modeling treatment variability as normally distributed random variables with standard deviations reflecting a clinical system. The simulated treatment plans were then recalculated and compared against their nominal, idealized dose distribution among several trials. It was hypothesized that a plan's robustness to these delivery variables could be reduced by restricting a trimmer's placement toward a beamlet's central axis during collimation. RESULTS By introducing a minimum trimmer offset of 1.5 mm, the variation of the planning target volume (PTV) D95% coverage was reduced to within 2% of the prescribed dose. The treatment plans with trimmers that were placed within 0.5 mm of a collimated beamlet's central axis resulted in the greatest healthy tissue sparing but deviations as high as 11.4% to the PTV D95% were observed. The nominal conformity of these treatment plans utilizing the 1.5 mm trimmer offset was also well maintained. For each treatment plan studied, the 90% conformity index remained within 6.25% of the conformity index achieved without a minimum trimmer offset, and the D50% of surrounding healthy tissue increased by no more than 3.1 Gy relative to a plan without a trimmer offset. CONCLUSIONS While DCPT can offer a significant reduction in healthy tissue irradiation, the results from this work indicate that special care must be taken to ensure proper PTV coverage amid uncertainties associated with this new treatment modality. A simple approach utilizing a minimum trimmer offset was able to preserve the majority of the target conformity and healthy tissue sparing the DCS technology affords while minimizing the uncertainties in this treatment approach.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
24
|
Hälg RA, Schneider U. Neutron dose and its measurement in proton therapy-current State of Knowledge. Br J Radiol 2020; 93:20190412. [PMID: 31868525 PMCID: PMC7066952 DOI: 10.1259/bjr.20190412] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Proton therapy has shown dosimetric advantages over conventional radiation therapy using photons. Although the integral dose for patients treated with proton therapy is low, concerns were raised about late effects like secondary cancer caused by dose depositions far away from the treated area. This is especially true for neutrons and therefore the stray dose contribution from neutrons in proton therapy is still being investigated. The higher biological effectiveness of neutrons compared to photons is the main cause of these concerns. The gold-standard in neutron dosimetry is measurements, but performing neutron measurements is challenging. Different approaches have been taken to overcome these difficulties, for instance with newly developed neutron detectors. Monte Carlo simulations is another common technique to assess the dose from secondary neutrons. Measurements and simulations are used to develop analytical models for fast neutron dose estimations. This article tries to summarize the developments in the different aspects of neutron dose in proton therapy since 2017. In general, low neutron doses have been reported, especially in active proton therapy. Although the published biological effectiveness of neutrons relative to photons regarding cancer induction is higher, it is unlikely that the neutron dose has a large impact on the second cancer risk of proton therapy patients.
Collapse
|
25
|
Sugiyama S, Katsui K, Tominaga Y, Waki T, Katayama N, Matsuzaki H, Kariya S, Kuroda M, Nishizaki K, Kanazawa S. Dose distribution of intensity-modulated proton therapy with and without a multi-leaf collimator for the treatment of maxillary sinus cancer: a comparative effectiveness study. Radiat Oncol 2019; 14:209. [PMID: 31752928 PMCID: PMC6873663 DOI: 10.1186/s13014-019-1405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe complications, such as eye damage and dysfunciton of salivary glands, have been reported after radiotherapy among patients with head and neck cancer. Complications such as visual impairment have also been reported after proton therapy with pencil beam scanning (PBS). In the case of PBS, collimation can sharpen the penumbra towards surrounding normal tissue in the low energy region of the proton beam. In the current study, we examined how much the dose to the normal tissue was reduced by when intensity-modulated proton therapy (IMPT) was performed using a multi-leaf collimator (MLC) for patients with maxillary sinus cancer. METHODS Computed tomography findings of 26 consecutive patients who received photon therapy at Okayama University Hospital were used in this study. We compared D2% of the region of interest (ROI; ROI-D2%) and the mean dose of ROI (ROI-mean) with and without the use of an MLC. The organs at risk (OARs) were the posterior retina, lacrimal gland, eyeball, and parotid gland. IMPT was performed for all patients. The spot size was approximately 5-6 mm at the isocenter. The collimator margin was calculated by enlarging the maximum outline of the target from the beam's eye view and setting the margin to 6 mm. All plans were optimized with the same parameters. RESULTS The mean of ROI-D2% for the ipsilateral optic nerve was significantly reduced by 0.48 Gy, and the mean of ROI-mean for the ipsilateral optic nerve was significantly reduced by 1.04 Gy. The mean of ROI-mean to the optic chiasm was significantly reduced by 0.70 Gy. The dose to most OARs and the planning at risk volumes were also reduced. CONCLUSIONS Compared with the plan involving IMPT without an MLC, in the dose plan involving IMPT using an MLC for maxillary sinus cancer, the dose to the optic nerve and optic chiasm were significantly reduced, as measured by the ROI-D2% and the ROI-mean. These findings demonstrate that the use of an MLC during IMPT for maxillary sinus cancer may be useful for preserving vision and preventing complications.
Collapse
Affiliation(s)
- Soichi Sugiyama
- Departments of Radiology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Radiology, Tsuyama Chuo Hospital, Tusyama, Okayama, 708-0841, Japan
| | - Kuniaki Katsui
- Departments of Proton Beam Therapy, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yuki Tominaga
- Department of Radiation Technology, Tsuyama Chuo Hospital, Tusyama, Okayama, 708-0841, Japan
| | - Takahiro Waki
- Department of Radiology, Tsuyama Chuo Hospital, Tusyama, Okayama, 708-0841, Japan
| | - Norihisa Katayama
- Departments of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hidenobu Matsuzaki
- Departments of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shin Kariya
- Departments of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masahiro Kuroda
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazunori Nishizaki
- Departments of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Susumu Kanazawa
- Departments of Radiology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
26
|
Smith BR, Hyer DE, Flynn RT, Hill PM, Culberson WS. Trimmer sequencing time minimization during dynamically collimated proton therapy using a colony of cooperating agents. Phys Med Biol 2019; 64:205025. [PMID: 31484170 DOI: 10.1088/1361-6560/ab416d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamic collimation system (DCS) can be combined with pencil beam scanning proton therapy to deliver highly conformal treatment plans with unique collimation at each energy layer. This energy layer-specific collimation is accomplished through the synchronized motion of four trimmer blades that intercept the proton beam near the target boundary in the beam's eye view. However, the corresponding treatment deliveries come at the cost of additional treatment time since the translational speed of the trimmer is slower than the scanning speed of the proton pencil beam. In an attempt to minimize the additional trimmer sequencing time of each field while still maintaining a high degree of conformity, a novel process utilizing ant colony optimization (ACO) methods was created to determine the most efficient route of trimmer sequencing and beamlet scanning patterns for a collective set of collimated proton beamlets. The ACO process was integrated within an in-house treatment planning system optimizer to determine the beam scanning and DCS trimmer sequencing patterns and compared against an analytical approximation of the trimmer sequencing time should a contour-like scanning approach be assumed instead. Due to the stochastic nature of ACO, parameters where determined so that they could ensure good convergence and an efficient optimization of trimmer sequencing that was faster than an analytical contour-like trimmer sequencing. The optimization process was tested using a set of three intracranial treatment plans which were planned using a custom research treatment planning system and were successfully optimized to reduce the additional trimmer sequencing time to approximately 60 s per treatment field while maintaining a high degree of target conformity. Thus, the novel use of ACO techniques within a treatment planning algorithm has been demonstrated to effectively determine collimation sequencing patterns for a DCS in order to minimize the additional treatment time required for trimmer movement during treatment.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705. Author to whom correspondence should be addressed
| | | | | | | | | |
Collapse
|
27
|
Smith BR, Pankuch M, Hammer CG, DeWerd LA, Culberson WS. LET response variability of Gafchromic TM EBT3 film from a 60 Co calibration in clinical proton beam qualities. Med Phys 2019; 46:2716-2728. [PMID: 30740699 DOI: 10.1002/mp.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/01/2019] [Accepted: 02/02/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To establish a method of accurate dosimetry required to quantify the expected linear energy transfer (LET) quenching effect of EBT3 film used to benchmark the dose distribution for a given treatment field and specified measurement depth. In order to facilitate this technique, a full analysis of film calibration which considers LET variability at the plane of measurement and as a function of proton beam quality is demonstrated. Additionally, the corresponding uncertainty from the process was quantified for several measurement scenarios. MATERIALS AND METHODS The net change in optical density (OD) from a single version of Gafchromic TM EBT3 film was measured using an Epson flatbed scanner and NIST-traceable OD filters. Film OD response was characterized with respect to the known dose to water at the point of measurement for both a NIST-traceable 60 Co beam at the UWADCL and several clinical single-energy and spread-out Bragg peak (SOBP) proton beam qualities at the Northwestern Medicine Chicago Proton Center. Increasing proton LET environments were acquired by placing film at increasing depths of Gammex HE Solid Water® whose water-equivalent thickness was characterized prior to measurement. RESULTS A strong LET dependence was observed near the Bragg peak (BP) consistent with previous studies performed with earlier versions of EBT3 film. The influence of range straggling on the film's LET response appears to have a uniform effect toward the BP regardless of the nominal beam energy. Proximal to this depth, the film's response decreased with decreasing energy at the same dose-average LET. The opposite trend was observed for depths past the BP. Changes in the SOBP energy modulation showed a linear relationship between the film's relative response and dose-averaged LET. Relative effectiveness factors (RE) were observed to range between 2%-7% depending on the width of the SOBP and depth of the film. Using the field-specific calibration technique, a total k = 1 uncertainty in the absorbed dose to water was estimated to range from 4.68%-5.21%. CONCLUSION While EBT3 film's strong LET dependence is a common problem in proton beam dosimetry, this work has shown that the LET dependence can be taken into account by carefully considering the depth and energy modulation across the film using field-specific corrections. RE factors were determined with a combined k = 1 uncertainty of 3.57% for SOBP environments and between 3.17%-4.69% for uniform, monoenergetic fields proximal to the distal 80% of the BP.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Pankuch
- Division of Medical Physics, Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, IL, 60555, USA
| | - Clifford G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
28
|
Smith BR, Hyer DE, Flynn RT, Culberson WS. Technical Note: Optimization of spot and trimmer position during dynamically collimated proton therapy. Med Phys 2019; 46:1922-1930. [PMID: 30740709 DOI: 10.1002/mp.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To demonstrate a novel theoretical optimization design which considers beam spot and trimmer positioning in addition to beamlet weighting for dynamically collimated proton therapy (DCPT) treatments. Prior to this, the previous methods of plan optimization used to study this emerging technology relied upon an intuitive selection criterion to fix the trimmers blades for a uniform grid of beam spots before determining the individual beamlet weights. To evaluate the potential benefit from this new optimization design, a treatment planning optimization study was performed in order to compare the algorithm's functionality against the existing methods of plan optimization. MATERIALS AND METHODS A direct parameter optimization (DPO) method was developed to determine beam spot and trimmer positions cohesively with beamlet weighting for DCPT treatment plans. Gradients were numerically determined from applying small adjustments to the aforementioned parameters and quantifying the resulting impact on an objective function. This technique was compared to the conventional trimmer selection algorithm (TSA) which does not optimize spot position concurrently with trimmer position. Both planning methods were used to optimize a set of brain treatment plans, and the resulting dose distributions were compared with dose-volume histogram quantities in addition to target coverage, homogeneity, and conformity metrics. RESULTS An overall improvement to the target conformity and healthy tissue sparing was achieved with DPO over TSA while maintaining an equivalent planning target volume (PTV) coverage index for the three brain patients evaluated in this study. On average, the conformity index improved by 5.5% when utilizing DPO. A similar improvement in reducing the dose to several organs at risk was also noted. CONCLUSION Both the TSA and DPO planning methods can achieve highly conformal treatments with the dynamic collimation system (DCS) technology. However, an improvement in the target conformity and healthy tissue sparing was achieved by simultaneously optimizing beam spot position, trimmer location, and beamlet weights using DPO in comparison to the TSA technique.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
29
|
Winterhalter C, Meier G, Oxley D, Weber DC, Lomax AJ, Safai S. Contour scanning, multi-leaf collimation and the combination thereof for proton pencil beam scanning. Phys Med Biol 2018; 64:015002. [PMID: 30523928 DOI: 10.1088/1361-6560/aaf2e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In proton therapy, the lateral fall-off is often used to spare critical organs. It is therefore crucial to improve the penumbra for proton pencil beam scanning. However, previous work has shown that collimation may not be necessary for depths of >15 cm in water. As such, in this work we investigate the effectiveness of a thin multi leaf collimator (just thick enough to completely stop protons with ranges of <15 cm in water) for energy layer specific collimation in patient geometries, when applied in combination with both grid and contour scanned PBS proton therapy. For this, an analytical model of collimated beam shapes, based solely on data available in the treatment planning system, has been included in the optimization, with the resulting optimised plans then being recalculated using Monte Carlo in order to most accurately simulate the full physics effects of the collimator. For grid based scanning, energy specific collimation has been found to reduce the V30 outside the PTV by 19.8% for an example patient when compared to the same pencil beam placement without collimation. V30 could be even reduced by a further 5.6% when combining collimation and contour scanning. In addition, mixed plans, consisting of contour scanning for deep fields (max range >15 cm WER) and collimated contour scanning for superficial fields (<15 cm), have been created for four patients, by which V30 could be reduced by 0.8% to 8.0% and the mean dose to the brain stem by 1.5% to 3.3%. Target dose homogeneity however is not substantially different when compared to the best un-collimated scenario. In conclusion, we demonstrate the potential advantages of a thin, multi leaf collimator in combination with contour scanning for energy layer specific collimation in PBS proton therapy.
Collapse
Affiliation(s)
- Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland. Physics Department, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Smith BR, Hyer DE, Hill PM, Culberson WS. Secondary Neutron Dose From a Dynamic Collimation System During Intracranial Pencil Beam Scanning Proton Therapy: A Monte Carlo Investigation. Int J Radiat Oncol Biol Phys 2018; 103:241-250. [PMID: 30114462 DOI: 10.1016/j.ijrobp.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Patients receiving pencil beam scanning (PBS) proton therapy with the addition of a dynamic collimation system (DCS) are potentially subject to an additional neutron dose from interactions between the incident proton beam and the trimmer blades. This study investigates the secondary neutron dose rates for both single-field uniform dose (SFUD) and intensity modulated proton therapy treatments. METHODS AND MATERIALS Secondary neutron dose distributions were calculated for both a dynamically collimated and an uncollimated, dual-field chordoma treatment plan and compared with previously published neutron dose rates from other contemporary scanning treatment modalities. Monte Carlo N-Particle transport code was used to track all primary and secondary particles generated from nuclear reactions within the DCS during treatment through a model of the patient geometry acquired from the computed tomography planning data set. Secondary neutron ambient dose equivalent distributions were calculated throughout the patient using a meshgrid with a tally resolution equivalent to that of the treatment planning computed tomography. RESULTS The median healthy-brain neutron ambient dose equivalent for a dynamically collimated intracranial chordoma treatment plan using a DCS was found to be 0.97 mSv/Gy for the right lateral SFUD field, 1.37 mSv/Gy for the apex SFUD field, and 1.24 mSv/Gy for the composite intensity modulated proton therapy distribution from 2 fields. CONCLUSIONS These results were at least 55% lower than what has been reported for uniform scanning modalities with brass apertures. However, they still reflect an increase in the excess relative risk of secondary cancer incidence compared with an uncollimated PBS treatment using only a graphite range shifter. Regardless, the secondary neutron dose expected from the DCS for these PBS proton therapy treatments appears to be on the order of, or below, what is expected for alternative collimated proton therapy techniques.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
31
|
Winterhalter C, Lomax A, Oxley D, Weber DC, Safai S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys Med Biol 2018; 63:025022. [PMID: 29324441 DOI: 10.1088/1361-6560/aaa2ad] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
Collapse
Affiliation(s)
- C Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | | | | | | |
Collapse
|