1
|
Chow JCL. Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:117. [PMID: 39852732 PMCID: PMC11767847 DOI: 10.3390/nano15020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems. Despite their contributions, MC simulations face challenges such as modeling biological complexity, computational demands, and the scarcity of reliable nanoscale data. However, emerging technologies, including hybrid modeling approaches, high-performance computing, and quantum simulation, are poised to overcome these limitations. Furthermore, novel advancements such as FLASH radiotherapy, multifunctional NPs, and patient-specific data integration are expanding the capabilities and clinical relevance of MC simulations. This topical review underscores the transformative potential of MC simulations in bridging fundamental research and clinical translation. By facilitating personalized nanomedicine and streamlining regulatory and clinical trial processes, MC simulations offer a pathway toward more effective, tailored, and accessible cancer treatments. The continued evolution of simulation techniques, driven by interdisciplinary collaboration and technological innovation, ensures that MC simulations will remain at the forefront of nanomedicine's progress.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada; ; Tel.: +1-416-946-4501
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
2
|
Improving the Effect of Cancer Cells Irradiation with X-rays and High-Energy Protons Using Bimetallic Palladium-Platinum Nanoparticles with Various Nanostructures. Cancers (Basel) 2022; 14:cancers14235899. [PMID: 36497386 PMCID: PMC9736524 DOI: 10.3390/cancers14235899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-sized radiosensitizers can be used to increase the effectiveness of radiation-based anticancer therapies. In this study, bimetallic, ~30 nm palladium-platinum nanoparticles (PdPt NPs) with different nanostructures (random nano-alloy NPs and ordered core-shell NPs) were prepared. Scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), zeta potential measurements, and nanoparticle tracking analysis (NTA) were used to provide the physicochemical characteristics of PdPt NPs. Then, PdPt NPs were added to the cultures of colon cancer cells and normal colon epithelium cells in individually established non-toxic concentrations and irradiated with the non-harmful dose of X-rays/protons. Cell viability before and after PdPt NPs-(non) assisted X-ray/proton irradiation was evaluated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Flow cytometry was used to assess cell apoptosis. The results showed that PdPt NPs significantly enhanced the effect of irradiation on cancer cells. It was noticed that nano-alloy PdPt NPs possess better radiosensitizing properties compared to PtPd core-shell NPs, and the combined effect against cancer cells was c.a. 10% stronger for X-ray than for proton irradiation. Thus, the radio-enhancing features of differently structured PdPt NPs indicate their potential application for the improvement of the effectiveness of radiation-based anticancer therapies.
Collapse
|
3
|
Munjal T, Dutta S. Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. NANO SELECT 2021. [DOI: 10.1002/nano.202100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Tanya Munjal
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| | - Saikat Dutta
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| |
Collapse
|
4
|
Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202104199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractNanomaterials with cancer‐imaging and therapeutic properties have emerged as the principal focus of nanotheranostics. The past decade has experienced a significant increase in research in the design, formulation, and preclinical and clinical trials of theranostic nanosystems. However, current theranostic nanoformulations have yet to be approved by the FDA for clinical use. Consequently, the present review focuses on the importance of the careful examination of the in vivo preclinical status of specific nanotheranostic materials as a prerequisite for their clinical translation. The scope of coverage is structured according to all of the major organic, inorganic, 2D, and hybrid nanotheranostic materials and their in vivo preclinical status. The therapeutic advantages and limitations of these materials in animal models are considered and the various strategies to enhance the biocompatibility of theranostic nanoparticles are summarized.
Collapse
Affiliation(s)
- Kochurani K. Johnson
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Pramod Koshy
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Jia‐Lin Yang
- Prince of Wales Clinical School Faculty of Medicine UNSW Sydney Sydney New South Wales 2052 Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
7
|
He Z, Huang X, Wang C, Li X, Liu Y, Zhou Z, Wang S, Zhang F, Wang Z, Jacobson O, Zhu JJ, Yu G, Dai Y, Chen X. A Catalase-Like Metal-Organic Framework Nanohybrid for O 2 -Evolving Synergistic Chemoradiotherapy. Angew Chem Int Ed Engl 2019; 58:8752-8756. [PMID: 31046176 PMCID: PMC6690394 DOI: 10.1002/anie.201902612] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Tumor hypoxia, the "Achilles' heel" of current cancer therapies, is indispensable to drug resistance and poor therapeutic outcomes especially for radiotherapy. Here we propose an in situ catalytic oxygenation strategy in tumor using porphyrinic metal-organic framework (MOF)-gold nanoparticles (AuNPs) nanohybrid as a therapeutic platform to achieve O2 -evolving chemoradiotherapy. The AuNPs decorated on the surface of MOF effectively stabilize the nanocomposite and serve as radiosensitizers, whereas the MOF scaffold acts as a container to encapsulate chemotherapeutic drug doxorubicin. In vitro and in vivo studies verify that the catalase-like nanohybrid significantly enhances the radiotherapy effect, alleviating tumor hypoxia and achieving synergistic anticancer efficacy. This hybrid nanomaterial remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theranostic nanomedicines.
Collapse
Affiliation(s)
- Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
He Z, Huang X, Wang C, Li X, Liu Y, Zhou Z, Wang S, Zhang F, Wang Z, Jacobson O, Zhu J, Yu G, Dai Y, Chen X. A Catalase‐Like Metal‐Organic Framework Nanohybrid for O
2
‐Evolving Synergistic Chemoradiotherapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhimei He
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyNanchang University Nanchang 330047 P. R. China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University Nanjing 210093 P. R. China
| | - Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Yunlu Dai
- Faculty of Health SciencesUniversity of Macau Macau SAR 999078 P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| |
Collapse
|