1
|
Betz LH, Dillman JR, Jones BV, Tkach JA. MRI safety screening of children with implants: updates and challenges. Pediatr Radiol 2023; 53:1454-1468. [PMID: 37079039 DOI: 10.1007/s00247-023-05651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023]
Abstract
MRI is the imaging modality of choice for assessing many pediatric medical conditions. Although there are several inherent potential safety risks associated with the electromagnetic fields exploited for MRI, they are effectively mitigated through strict adherence to established MRI safety practices, enabling the safe and effective use of MRI in clinical practice. The potential hazards of the MRI environment may be exacerbated by/in the presence of implanted medical devices. Awareness of the unique MRI safety and screening challenges associated with these implanted devices is critical to ensuring MRI safety for the affected patients. In this review article, we will discuss the basics of MRI physics as they relate to MRI safety in the presence of implanted medical devices, strategies for assessing children with known or suspected implanted medical devices, and the particular management of several well-established common, as well as recently developed, implanted devices encountered at our institution.
Collapse
Affiliation(s)
- Lisa H Betz
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA.
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Blaise V Jones
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Gurney-Champion OJ, Mahmood F, van Schie M, Julian R, George B, Philippens MEP, van der Heide UA, Thorwarth D, Redalen KR. Quantitative imaging for radiotherapy purposes. Radiother Oncol 2020; 146:66-75. [PMID: 32114268 PMCID: PMC7294225 DOI: 10.1016/j.radonc.2020.01.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Quantitative imaging biomarkers show great potential for use in radiotherapy. Quantitative images based on microscopic tissue properties and tissue function can be used to improve contouring of the radiotherapy targets. Furthermore, quantitative imaging biomarkers might be used to predict treatment response for several treatment regimens and hence be used as a tool for treatment stratification, either to determine which treatment modality is most promising or to determine patient-specific radiation dose. Finally, patient-specific radiation doses can be further tailored to a tissue/voxel specific radiation dose when quantitative imaging is used for dose painting. In this review, published standards, guidelines and recommendations on quantitative imaging assessment using CT, PET and MRI are discussed. Furthermore, critical issues regarding the use of quantitative imaging for radiation oncology purposes and resultant pending research topics are identified.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Faisal Mahmood
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marcel van Schie
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert Julian
- Department of Radiotherapy Physics, Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | - Ben George
- Radiation Therapy Medical Physics Group, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | | | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University of Tübingen, Germany
| | - Kathrine R Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS One 2018; 13:e0194590. [PMID: 29617445 PMCID: PMC5884505 DOI: 10.1371/journal.pone.0194590] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging (DWI) MRI data bears much promise as a tool for visualizing tumours and monitoring treatment response. To improve the currently poor precision of IVIM, several fit algorithms have been suggested. In this work, we compared the performance of two Bayesian IVIM fit algorithms and four other IVIM fit algorithms for pancreatic cancer imaging. DWI data were acquired in 14 pancreatic cancer patients during two MRI examinations. Three different measures of performance of the fitting algorithms were assessed: (i) uniqueness of fit parameters (Spearman’s rho); (ii) precision (within-subject coefficient of variation, wCV); and (iii) contrast between tumour and normal-appearing pancreatic tissue. For the diffusivity D and perfusion fraction f, a Bayesian fit (IVIM-Bayesian-lin) offered the best trade-off between tumour contrast and precision. With the exception for IVIM-Bayesian-lin, all algorithms resulted in a very poor precision of the pseudo-diffusion coefficient D* with a wCV of more than 50%. The pseudo-diffusion coefficient D* of the Bayesian approaches were, however, significantly correlated with D and f. Therefore, the added value of fitting D* was considered limited in pancreatic cancer patients. The easier implemented least squares fit with fixed D* (IVIM-fixed) performed similar to IVIM-Bayesian-lin for f and D. In conclusion, the best performing IVIM fit algorithm was IVM-Bayesian-lin, but an easier to implement least squares fit with fixed D* performs similarly in pancreatic cancer patients.
Collapse
|
4
|
Klaassen R, Gurney-Champion OJ, Wilmink JW, Besselink MG, Engelbrecht MRW, Stoker J, Nederveen AJ, van Laarhoven HWM. Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma. Magn Reson Imaging 2018; 50:1-9. [PMID: 29476781 DOI: 10.1016/j.mri.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with advanced PDAC to enable for such evaluation using these techniques. MATERIALS & METHODS 15 PDAC patients underwent two DCE, T2* and anatomical 3 T MRI sessions before start of treatment. Parametric maps were calculated for the transfer constant (Ktrans), rate constant (kep), extracellular extravascular space (ve) and perfusion fraction (vp). Quantitative R2* (1/T2*) maps were obtained from the multi-echo T2* images. Differences between normal and cancerous pancreas were determined using a Wilcoxon matched pairs test. Repeatability was obtained using Bland-Altman analysis and relations between DCE and T2*/R2* were observed by Spearman correlation and voxel-wise binned plots of tumor voxels. RESULTS PDAC Ktrans (p = 0.007), kep (p < 0.001), vp (p = 0.035) were lower and ve (p < 0.001) was higher compared to normal pancreas. The coefficient of variation between sessions was 21.8% for Ktrans, 9.9% for kep, 19.3% for ve, 18.2% for vp and 18.7% for R2*. Variation between patients ranged from 20.2% for kep to 43.6% for Ktrans. In the tumor both Ktrans (r = 0.56, p = 0.030) and ve (r = 0.54, p = 0.037) showed a positive correlation with T2*. Voxel wise analysis showed a steep increase in R2* for tumor voxels with lower Ktrans and ve. CONCLUSION We showed good repeatability of DCE and T2* related MRI parameters in advanced PDAC patients. Furthermore, we have illustrated the relation of DCE Ktrans and ve with tissue T2* and R2* indicating substantial value of these parameters for detecting tumor hypoxia in future studies. The results from our study pave the way for further response evaluation studies and patient selection based on DCE and T2* parameters.
Collapse
Affiliation(s)
- Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; Cancer Center Amsterdam, LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands.
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands; Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Schneider S, Jølck RI, Troost EGC, Hoffmann AL. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med Phys 2017; 45:37-47. [DOI: 10.1002/mp.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sergej Schneider
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
| | - Rasmus Irming Jølck
- Nanovi Radiotherapy A/S; DK-2800 Kongens Lyngby Denmark
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 DK-2800 Kongens. Lyngby Denmark
| | - Esther Gera Cornelia Troost
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
- German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ); Heidelberg Germany
- National Center for Tumor Diseases (NCT), partner site Dresden; Dresden Germany
| | - Aswin Louis Hoffmann
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
6
|
Image Distortions on a Plastic Interstitial Computed Tomography/Magnetic Resonance Brachytherapy Applicator at 3 Tesla Magnetic Resonance Imaging and Their Dosimetric Impact. Int J Radiat Oncol Biol Phys 2017; 99:710-718. [PMID: 29280466 DOI: 10.1016/j.ijrobp.2017.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022]
Abstract
PURPOSE To quantify magnetic resonance imaging (MRI) distortions on a plastic intracavitary/interstitial applicator with plastic needles at a field strength of 3 T and to determine the dosimetric impact, using patient data. METHODS AND MATERIALS For 11 cervical cancer patients, our clinical MRI protocol was extended with 3 scans. From the first scan, a multi-echo acquisition, a map of the magnetic field (B0) was calculated and used to quantify the field inhomogeneity. The expected displacements of the applicator were quantified for the clinical sequence using the measured field inhomogeneity and the clinical sequence's bandwidth. The second and third scan were our routine clinical sequence (duration: <5 minutes each), acquired consecutively using opposing readout directions. The displacement of the applicator between these scans is approximately twice the displacement due to B0 inhomogeneity. The impact of the displacement on the dose was determined by reconstructing the applicator on both scans. The applicator was then shifted and rotated the same distance as the observed displacement to create a worst-case scenario (ie, twice the actual displacement due to B0 inhomogeneity). Next, the dose to 98%/90% (D98/D90) of the clinical target volume at high risk, as well as the dose to the most irradiated 2 cm3 for bladder and rectum, were calculated for the original plan as well as the shifted plan. RESULTS For a volume of interest containing the intrauterine device and the ovoids the 95th percentile of the absolute displacement ranged between 0.2 and 0.75 mm, over all patients. For all patients, the difference in D98/D90 in the opposing readout scans with the original plan was at most 4.7%/4.3%. For the dose to the most irradiated 2 cm3 of bladder/rectum, the difference was at most 6.0%/6.3%. CONCLUSIONS The dosimetric impact of distortions on this plastic applicator with plastic needles is limited. Applicator reconstruction for brachytherapy planning purposes is feasible at 3 T MRI.
Collapse
|
7
|
Gurney-Champion OJ, Bruins Slot T, Lens E, van der Horst A, Klaassen R, van Laarhoven HWM, van Tienhoven G, van Hooft JE, Nederveen AJ, Bel A. Quantitative assessment of biliary stent artifacts on MR images: Potential implications for target delineation in radiotherapy. Med Phys 2017; 43:5603. [PMID: 27782717 DOI: 10.1118/1.4962476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Biliary stents may cause susceptibility artifacts, gradient-induced artifacts, and radio frequency (RF) induced artifacts on magnetic resonance images, which can hinder accurate target volume delineation in radiotherapy. In this study, the authors investigated and quantified the magnitude of these artifacts for stents of different materials. METHODS Eight biliary stents made of nitinol, platinum-cored nitinol, stainless steel, or polyethylene from seven vendors, with different lengths (57-98 mm) and diameters (3.0-11.7 mm), were placed in a phantom. To quantify the susceptibility artifacts sequence-independently, ΔB0-maps and T2∗-maps were acquired at 1.5 and 3 T. To study the effect of the gradient-induced artifacts at 3 T, signal decay in images obtained with maximum readout gradient-induced artifacts was compared to signal decay in reference scans. To quantify the RF induced artifacts at 3 T, B1-maps were acquired. Finally, ΔB0-maps and T2∗-maps were acquired at 3 T of two pancreatic cancer patients who had received platinum-cored nitinol biliary stents. RESULTS Outside the stent, susceptibility artifacts dominated the other artifacts. The stainless steel stent produced the largest susceptibility artifacts. The other stents caused decreased T2∗ up to 5.1 mm (1.5 T) and 8.5 mm (3 T) from the edge of the stent. For sequences with a higher bandwidth per voxel (1.5 T: BWvox > 275 Hz/voxel; 3 T: BWvox > 500 Hz/voxel), the B0-related susceptibility artifacts were negligible (<0.2 voxels). The polyethylene stent showed no artifacts. In vivo, the changes in B0 and T2∗ induced by the stent were larger than typical variations in B0 and T2∗ induced by anatomy when the stent was at an angle of 30° with the main magnetic field. CONCLUSIONS Susceptibility artifacts were dominating over the other artifacts. The magnitudes of the susceptibility artifacts were determined sequence-independently. This method allows to include additional safety margins that ensure target irradiation.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands and Department of Radiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Thijs Bruins Slot
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Eelco Lens
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Astrid van der Horst
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Remy Klaassen
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands and Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|