1
|
Flanz J, Bortfeld T. Evolution of technology to optimize the delivery of proton therapy: the third generation. Semin Radiat Oncol 2013; 23:142-8. [PMID: 23473692 DOI: 10.1016/j.semradonc.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolution of proton therapy technology will lead to a new generation of systems that allow for greater accuracy and precision of the dose delivery and will be more compact. We envision that over the next 10-15 years, the quality of deliverable proton dose distributions in the patient will be pushed nearly toward the physical limit of proton therapy. Those future proton therapy systems will fit into treatment rooms of similar size as today's conventional radiation treatment rooms. At the same time, due to technological advancements, the cost of proton therapy will come down to the cost of advanced photon therapy. We discuss some of the technologies that will put these speculative improvements within reach.
Collapse
Affiliation(s)
- Jacob Flanz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
2
|
Chang Z, Wu Q, Adamson J, Ren L, Bowsher J, Yan H, Thomas A, Yin FF. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys 2013; 39:6981-7018. [PMID: 23127092 DOI: 10.1118/1.4762682] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A TrueBeam linear accelerator (TB-LINAC) is designed to deliver traditionally flattened and flattening-filter-free (FFF) beams. Although it has been widely adopted in many clinics for patient treatment, limited information is available related to commissioning of this type of machine. In this work, commissioning data of three units were measured, and multiunit comparison was presented to provide valuable insights and reliable evaluations on the characteristics of the new treatment system. METHODS The TB-LINAC is equipped with newly designed waveguide, carousel assembly, monitoring control, and integrated imaging systems. Each machine in this study has 4, 6, 8, 10, 15 MV flattened photon beams, and 6 MV and 10 MV FFF photon beams as well as 6, 9, 12, 16, 20, and 22 MeV electron beams. Dosimetric characteristics of the three new TB-LINAC treatment units are systematically measured for commissioning. High-resolution diode detectors and ion chambers were used to measure dosimetric data for a range of field sizes from 10 × 10 to 400 × 400 mm(2). The composite dosimetric data of the three units are presented in this work. The commissioning of intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), image-guided radiation therapy, and gating systems are also illustrated. Critical considerations of P(ion) of FFF photon beams and small field dosimetric measurements were investigated. RESULTS The authors found all PDDs and profiles matched well among the three machines. Beam data were quantitatively compared and combined through average to yield composite beam data. The discrepancies among the machines were quantified using standard deviation (SD). The mean SD of the PDDs among the three units is 0.12%, and the mean SD of the profiles is 0.40% for 10 MV FFF open fields. The variations of P(ion) of the chamber CC13 is 1.2 ± 0.1% under 6 MV FFF and 2.0 ± 0.5% under 10 MV FFF from dmax to the 18 cm-off-axis point at 35 cm depth under 40 × 40 cm(2). The mean penumbra of crossplane flattened photon beams at collimator angle of 0° is measured from 5.88 ± 0.09 to 5.99 ± 0.13 mm from 4 to 15 MV at 10 cm depth of 100 × 100 mm(2). The mean penumbra of crossplane beams at collimator angle of 0° is measured as 3.70 ± 0.21 and 4.83 ± 0.04 mm for 6 MV FFF and 10 MV FFF, respectively, at 10 cm depth with a field size of 5 × 5 cm(2). The end-to-end test procedures of both IMRT and VMAT were performed for various energy modes. The mean ion chamber measurements of three units showed less than 2% between measurement and calculation; the mean MultiCube ICA measurements demonstrated over 90% pixels passing gamma analysis (3%, 3 mm, 5% threshold). The imaging dosimetric data of KV planar imaging and CBCT demonstrated improved consistency with vendor specifications and dose reduction for certain imaging protocols. The gated output verification showed a discrepancy of 0.05% or less between gating radiation delivery and nongating radiation delivery. CONCLUSIONS The commissioning data indicated good consistency among the three TB-LINAC units. The commissioning data provided us valuable insights and reliable evaluations on the characteristics of the new treatment system. The systematically measured data might be useful for future reference.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Arjomandy B, Tailor R, Zhao L, Devic S. EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities. Med Phys 2012; 39:912-21. [DOI: 10.1118/1.3678989] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
4
|
Historical Development of Stereotactic Ablative Radiotherapy. STEREOTACTIC BODY RADIATION THERAPY 2012. [DOI: 10.1007/174_2012_540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Gevaert T, Verellen D, Engels B, Depuydt T, Heuninckx K, Tournel K, Duchateau M, Reynders T, De Ridder M. Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys 2011; 83:467-74. [PMID: 21945110 DOI: 10.1016/j.ijrobp.2011.05.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. METHODS AND MATERIALS We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. RESULTS The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. CONCLUSIONS With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning.
Collapse
Affiliation(s)
- Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sharma DS, Dongre PM, Mhatre V, Heigrujam M. Physical and dosimetric characteristic of high-definition multileaf collimator (HDMLC) for SRS and IMRT. J Appl Clin Med Phys 2011; 12:3475. [PMID: 21844860 PMCID: PMC5718650 DOI: 10.1120/jacmp.v12i3.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/09/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022] Open
Abstract
Physical and dosimetric characteristics of HDMLC were studied for SRS6, 6, and 10 MV X‐rays from Novalis Tx. This in‐built tertiary collimator consists of 60 pairs (32×0.25 cm; 26×0.5 cm and 2×0.7 cm) of leaves. Properties of HDMLC studied included alignment, readout and radiation field congruence, radiation penumbra, accuracy and reproducibility of leaf position and gap width, static and dynamic leaf shift, tongue‐and‐groove effect, leaf transmission and leakage, leaf travel speed, and delivery of dynamic conformal arc and IMRT. All tests were performed using a calibrated ionization chamber, film dosimetry and DynaLog file analysis. Alignment of leaves with isocenter plane was better than 0.03 cm at all gantry and collimator positions. The congruence of HDMLC readout and radiation field agreed to within ± 0.03cm for filed sizes ranging from 1×1 to 20×20 cm2. Mean 80% to 20% penumbra width parallel (perpendicular) to leaf motion was 0.24±0.05(0.21±0.02) cm, 0.37±0.12(0.29±0.07) cm, and 0.51±0.13(0.43±0.07) cm for SRS6, 6, and 10 MV X‐rays, respectively. Circular field penumbra was comparable to corresponding square field. Average penumbra of 1×20 cm2 field was effectively constant over off‐axis positions of up to 12 cm with mean value of 0.16 (± 0.01)cm at 1.5 cm depth and 0.38 (± 0.04)cm at 10 cm depth. Minimum and maximum effective penumbra along the straight diagonal edge of irregular fields increased from 0.3 and 0.32 cm at 70° steep angle to 0.35 and 0.56 cm at 20° steep angle. Modified Picket Fence test showed average FWHM of 0.18 cm and peak‐to‐peak distance of 1.99 cm for 0.1 cm band and 2 cm interband separation. Dynamic multileaf collimation (DMLC) output factor remained within ± 1% for 6 MV and ± 0.5% for 10 MV X‐rays at all gantry positions, and was reproducible within ± 0.5% over a period of 14 months. The static leaf shift was 0.03 cm for all energies, while dynamic leaf shift was 0.044 cm for 10 MV and 0.039 cm for both SRS6 and 6 MV X‐rays. The dose depression and corresponding tongue‐and‐groove size were 24% and 0.17 cm for 6 MV and 19% and 0.20 cm for 10 MV X‐rays. Average transmission through HDMLC was 1.09%, 1.14% and 1.34% for SRS6, 6 and 10 MV X‐rays. Analysis of DynaLog files for leaf speed test in arc dynamic mode, delivery test of dynamic conformal arc, and step‐and‐shoot and sliding window IMRT showed at least 95% or more of the error counts had misplacements < 0.2cm, with maximum root mean square (RMS) error value calculated at 0.13 cm. Accurate and reproducible leaf position and gap width, and less leakage and small consistent penumbra over the fields demonstrate HDMLC suitable for high‐dose resolution SRS and IMRT. PACS number: 87.56.N‐, 87.55.Qr, 87.50.cm, 87.55.de, 87.53.Ly
Collapse
|
7
|
Intensity modulated radiosurgery for the spine: Dosimetric impact of beamlet size variation in the leaf travel direction. Radiother Oncol 2011; 98:227-33. [DOI: 10.1016/j.radonc.2010.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 09/07/2010] [Accepted: 10/03/2010] [Indexed: 01/09/2023]
|
8
|
Physical characterization and comparison of two commercially available micro-MLCs. Phys Med 2011; 27:52-7. [DOI: 10.1016/j.ejmp.2010.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 12/28/2009] [Accepted: 01/27/2010] [Indexed: 11/24/2022] Open
|
9
|
Tatsumi D, Nakada R, Tsutsumi S, Sakamoto M, Inoue M, Ichida T, Hosono M. [Mechanical accuracy of a stereotactic irradiation system using a micro multi-leaf collimator]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2011; 67:1267-1274. [PMID: 22026979 DOI: 10.6009/jjrt.67.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mechanical accuracy of a stereotactic irradiation system using a micro multi-leaf collimator (mMLC), Elekta DMLC, has been evaluated. Measurements were made to obtain transmission, leakage, penumbra, and positioning accuracy of the DMLC leaf for a 6 MV photon beam. Mechanical accuracy and long term stability of a linac isocenter was also evaluated. The resulting transmission, along a line perpendicular to the leaf movement, was 0.31±0.01%, and the leakage from the closed opposing leaf pairs was 0.39±0.01%. The measured penumbra, at a depth incurring maximum dose, was 2.37±0.16 mm toward the leaf end and 2.14±0.18 mm toward the leaf side for various field sizes. The leaf gap width error, of 0.10±0.08 mm, was obtained by analyzing picket fence test results. The maximum leaf positioning error, of 0.14±0.06 mm, was obtained by analyzing the log file for a various gantry angles during an arc delivery. The isocenter accuracy was within a radius of 1 mm, without any recalibration for two years. In conclusion, our stereotactic irradiation system using DMLC was capable of providing accurate stereotactic treatment.
Collapse
|
10
|
Nakamura M, Sawada A, Ishihara Y, Takayama K, Mizowaki T, Kaneko S, Yamashita M, Tanabe H, Kokubo M, Hiraoka M. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000a). Med Phys 2010; 37:4684-91. [DOI: 10.1118/1.3480510] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Kairn T, Aland T, Franich RD, Johnston PN, Kakakhel MB, Kenny J, Knight RT, Langton CM, Schlect D, Taylor ML, Trapp JV. Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device. Phys Med Biol 2010; 55:N451-63. [DOI: 10.1088/0031-9155/55/17/n01] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Gong Y, Wang S, Zhou L, Liu Y, Xu Y, Lu Y, Bai S, Fu Y, Xu Q, Jiang Q. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer. Radiat Oncol 2010; 5:65. [PMID: 20633283 PMCID: PMC2912923 DOI: 10.1186/1748-717x-5-65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/15/2010] [Indexed: 02/05/2023] Open
Abstract
Purpose To study the impacts of multileaf collimators (MLC) width [standard MLC width of 10 mm (sMLC) and micro-MLC width of 4 mm (mMLC)] in the intensity-modulated radiotherapy (IMRT) planning for the upper thoracic esophageal cancer (UTEC). Methods and materials 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs) and dose volume histogram-based parameters [conformity index (CI) and homogeneous index (HI)] were compared between the IMRT plans with sMLC and with mMLC. Results The IMRT plans with the mMLC were more efficient (average MUs: 703.1 ± 68.3) than plans with the sMLC (average MUs: 833.4 ± 73.8) (p < 0.05). Also, compared to plans with the sMLC, the plans with the mMLC showed advantages in dose coverage of the planning gross tumor volume (Pgtv) (CI 0.706 ± 0.056/HI 1.093 ± 0.021) and the planning target volume (PTV) (CI 0.707 ± 0.029/HI 1.315 ± 0.013) (p < 0.05). In addition, the significant dose sparing in the D5 (3260.3 ± 374.0 vs 3404.5 ± 374.4)/gEUD (1815.1 ± 281.7 vs 1849.2 ± 297.6) of the spinal cord, the V10 (33.2 ± 6.5 vs 34.0 ± 6.7), V20 (16.0 ± 4.6 vs 16.6 ± 4.7), MLD (866.2 ± 174.1 vs 887.9 ± 172.1) and gEUD (938.6 ± 175.2 vs 956.8 ± 171.0) of the lungs were observed in the plans with the mMLC, respectively (p < 0.05). Conclusions Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.
Collapse
Affiliation(s)
- Youling Gong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kairn T, Kenny J, Crowe SB, Fielding AL, Franich RD, Johnston PN, Knight RT, Langton CM, Schlect D, Trapp JV. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution. Med Phys 2010; 37:1761-7. [DOI: 10.1118/1.3355873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Eaton D, Twyman N, Thomas S. Commissioning a Miniature Multileaf Collimator for Small Field Radiotherapy. Med Dosim 2010; 35:1-6. [DOI: 10.1016/j.meddos.2008.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/11/2008] [Accepted: 12/29/2008] [Indexed: 11/29/2022]
|
15
|
Linthout N, Bral S, Van de Vondel I, Verellen D, Tournel K, Gevaert T, Duchateau M, Reynders T, Storme G. Treatment delivery time optimization of respiratory gated radiation therapy by application of audio-visual feedback. Radiother Oncol 2009; 91:330-5. [DOI: 10.1016/j.radonc.2009.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 12/25/2022]
|
16
|
Giantsoudi D, Stathakis S, Liu Y, Shi C, Papanikolaou N. Monte Carlo Modeling and Commissioning of a Dual-layer Micro Multileaf Collimator. Technol Cancer Res Treat 2009; 8:105-14. [PMID: 19334791 DOI: 10.1177/153303460900800203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to commission a first-of-its-kind dual-layer micro multileaf collimator (mMLC) system by using Monte Carlo dose calculations. The mMLC is attached on a Varian 600C linac. Having a lower and an upper layer of MLC leaves, this mMLC allows for field shaping in two orthogonal directions. The commissioning of the system was performed in two steps: without and with the mMLC attached on the linac. The treatment head without and with the mMLC was modeled in the BEAMnrc Monte Carlo (MC) code. The scoring planes for the phase space files were specified below the linac's secondary collimators (jaws) and above and below the mMLC. With the mMLC attached to the linac the field size was defined by the jaws as 10 x 10 cm(2), which is also the maximum possible field size that can be shaped by the mMLC. For the commissioning of the linac, several fields of various sizes were simulated and compared against ionization chamber measurements in a water phantom. Output factors for several field sizes, as well as percent depth dose curves and dose profiles for rectangular and irregular shape fields, were calculated and compared against measurements in water. Agreement between measured and calculated data was better than 1% and less than 1.0 mm in the penumbra region for open fields. With the mMLC attached, the agreement between measurements and MC calculations is within 1.0% or 1.0 mm in the penumbra region.
Collapse
Affiliation(s)
- D Giantsoudi
- Cancer Therapy and Research Center at Univ of Texas Health Science Center, 7979 Wurzbach Rd., San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
17
|
Chang Z, Wang Z, Wu QJ, Yan H, Bowsher J, Zhang J, Yin FF. Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator. Med Phys 2008; 35:4460-4463. [DOI: 10.1118/1.2977668] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
18
|
Benedict SH, Bova FJ, Clark B, Goetsch SJ, Hinson WH, Leavitt DD, Schlesinger DJ, Yenice KM. The role of medical physicists in developing stereotactic radiosurgery. Med Phys 2008; 35:4262-77. [DOI: 10.1118/1.2969268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
19
|
Das IJ, Cheng CW, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 2008; 35:4186-215. [PMID: 18841871 DOI: 10.1118/1.2969070] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL. Patient Dose From Megavoltage Computed Tomography Imaging. Int J Radiat Oncol Biol Phys 2008; 70:1579-87. [DOI: 10.1016/j.ijrobp.2007.11.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
|
21
|
Liu Y, Shi C, Tynan P, Papanikolaou N. Dosimetric characteristics of dual-layer multileaf collimation for small-field and intensity-modulated radiation therapy applications. J Appl Clin Med Phys 2008; 9:15-29. [PMID: 18714277 PMCID: PMC5721708 DOI: 10.1120/jacmp.v9i2.2709] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present work was to measure the performance characteristics in the penumbra region and on the leaf‐end of an innovative dual‐layer micro multileaf collimator (DmMLC). The DmMLC consists of two orthogonal (upper and lower) layers of leaves; a standard MLC consists of one layer. The DmMLC provides unique performance characteristics in smoothing dose undulation, reducing leaf‐end transmission, and reducing MLC field dependence of the leaf stepping angle. Two standard MLCs (80‐leaf and 120‐leaf versions: Varian Medical Systems, Palo Alto, CA), a DmMLC (AccuKnife: Initia Medical Technology, Canton, MA), and a Cerrobend (Cerro Metal Products, Bellefonte, PA) block were used in performance studies involving a triangular field, a cross leaf‐end field, and a circular field. Measurements were made with 6‐MV X‐rays and extended dose range film at a depth of 5 cm in Solid Water (Gammex rmi, Middleton, WI) at a source–axis distance of 100 cm. The field penumbra width measured between the 20% and 80% isodose lines through the MLC‐80, MLC‐120, DmMLC, and Cerrobend block were 9.0, 5.0, 3.0, and 2.0 mm respectively. The dose undulation amplitude of the 50% isodose line was measured as 5.5, 2.0, and 0.5 mm for the MLC‐80, MLC‐120, and DmMLC respectively. The planar dose difference between the MLC‐80, MLC‐120, and DmMLC against Cerrobend block was measured as ranging at ±52.5%,±35.0%, and ±20.0% respectively. The leaf‐end transmission was measured at 22.4% in maximum and 15.4% in average when closing a single layer of the DmMLC, and at 2.4% in maximum and 2.1% in average when closing both layers. The MLC dependence of the leaf stepping angle with the DmMLC ranged from 45 degrees to 90 degrees. The standard MLC leaf stepping angle ranged from 0 degrees to 90 degrees. In conclusion, the dose undulation, leaf‐end transmission, and MLC field dependence of the leaf stepping angle with the DmMLC were remarkably reduced as compared with those of the standard MLCs. And as compared with Cerrobend block, the DmMLC provided very comparable performance in field‐edge smoothing and in the shaping of complex fields. PACS numbers: 87.56.Jk, 87.56.Nk, 87.56.Nj, 87.57.Nt
Collapse
Affiliation(s)
- Yaxi Liu
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Chengyu Shi
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Patricia Tynan
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Niko Papanikolaou
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| |
Collapse
|
22
|
Huntzinger C, Friedman W, Bova F, Fox T, Bouchet L, Boeh L. Trilogy Image-Guided Stereotactic Radiosurgery. Med Dosim 2007; 32:121-33. [PMID: 17472891 DOI: 10.1016/j.meddos.2007.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/22/2022]
Abstract
Full integration of advanced imaging, noninvasive immobilization, positioning, and motion-management methods into radiosurgery have resulted in fundamental changes in therapeutic strategies and approaches that are leading us to the treatment room of the future. With the introduction of image-guided radiosurgery (IGRS) systems, such as Trilogy, physicians have for the first time a practical means of routinely identifying and treating very small lesions throughout the body. Using new imaging processes such as positron emission tomography/computed tomography (PET/CT) scans, clinics may be able to detect these lesions and then eradicate them with image-guided stereotactic radiosurgery treatments. Thus, there is promise that cancer could be turned into a chronic disease, managed through a series of checkups, and Trilogy treatments when metastatic lesions reappear.
Collapse
|
23
|
Crop F, Reynaert N, Pittomvils G, Paelinck L, De Gersem W, De Wagter C, Vakaet L, De Neve W, Thierens H. Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system. Phys Med Biol 2007; 52:3275-90. [PMID: 17505102 DOI: 10.1088/0031-9155/52/11/022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this investigation was the verification of both the measured data and quality of the implementation of the add-on ModuLeaf miniature multileaf collimator (ML mMLC) into the clinical treatment planning system for conformal stereotactic radiosurgery treatment. To this end the treatment head with ML mMLC was modeled in the BEAMnrc Monte Carlo (MC) code. The 6 MV photon beams used in the setup were first benchmarked with a set of measurements. A total ML mMLC transmission of 1.13% of the 10 x 10 cm2 open field dose was measured and reproduced with the BEAMnrc/DOSXYZnrc code. Correspondence between calculated and measured output factors (OFs) was within 2%. Correspondence between MC and measured profiles was within 2% dose and 2 mm distance, only for the smallest 0.5 x 0.5 cm2 field the results were within 3% dose. In the next step, the MC model was compared with Gafchromic film measurements and Pinnacle(3) 7.4 f (convolution superposition algorithm) calculated dose distributions, using a gamma evaluation comparison, for a multi-beam patient setup delivered to a Lucytrade mark phantom. The gamma evaluation of the MC versus Gafchromic film resulted in 3.4% of points not fulfilling gamma <or= 1 for a 2%/2 mm criterion, the Pinnacle(3) 7.4 f versus Gafchromic results 3.8% and Pinnacle versus MC less than 1%. For specific patients with lesions of 8 cc and 0.2 cc, Monte Carlo and Pinnacle simulations of the plans were performed and compared using DVH evaluation. DVHs corresponded within 2% dose and 2% volume.
Collapse
Affiliation(s)
- F Crop
- Department of Medical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
External beam therapy (EBT) GAFCHROMIC film is evaluated for dosimetry and characterization of the CyberKnife radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with the different detectors, which are attributed to their different spatial resolution and non-water-equivalence.
Collapse
Affiliation(s)
- Ellen E Wilcox
- Radiation Oncology Department, Saint Francis Hospital, 114 Woodland Street, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
25
|
Linthout N, Verellen D, Tournel K, Reynders T, Duchateau M, Storme G. Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol 2007; 83:168-74. [PMID: 17499870 DOI: 10.1016/j.radonc.2007.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/22/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study is to assess retrospectively secondary patient motion induced by 6D patient setup correction. MATERIALS AND METHODS For 104 patients, treated with Novalis, 6D setup correction prior to treatment was performed by ExacTrac5.0/NovalisBody in combination with the Robotic Tilt Module mounted underneath the Exact Couch top. This 6D correction might induce additional setup errors due to patient reaction against the rotations. To evaluate induced secondary motion, the 6D setup correction is verified and evaluated with respect to the tolerance limits. RESULTS The majority of measured secondary motions are found within the tolerance limits. Detected secondary motions are mostly found in longitudinal shifts and lateral rotations, and mainly found in only 1 dimension during the same verification. The verifications indicate that the patient population can be divided into a group that hardly moves and a group that moves throughout all 6D setup corrections. The patient's behavior can be predicted by the evaluation of the first five fractions as none of the patients demonstrate a learning curve during the treatment. CONCLUSIONS 6D setup correction does not induce secondary motion for the majority of the patients and can therefore be applied for all treatment indications.
Collapse
Affiliation(s)
- Nadine Linthout
- Radiotherapy Department, Oncologisch Centrum, Universitair Ziekenhuis Brussel, Belgium.
| | | | | | | | | | | |
Collapse
|
26
|
Roberge D, Ruo R, Souhami L. Killing two birds with one stone: a dosimetric study of dual target radiosurgery using a single isocenter. Technol Cancer Res Treat 2007; 5:613-7. [PMID: 17121438 DOI: 10.1177/153303460600500609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The treatment of hematogenous brain metastases is a frequent indication for stereotactic radiosurgery (SRS). It is common for more than one metastasis to be treated during the same SRS session. We retrospectively identified four cases where our m3 micro multileaf collimator (mMLC) was used to create two distinct apertures and treat adjacent lesions using a single isocenter. For these four cases, single isocenter plans with static conformal beams were dosimetrically compared to plans utilizing two isocenters with static conformal beams or conformal arcs. The effects on dose homogeneity, dose conformity, and the minimum isodose separating the two targets are minor and variable. On the other hand, the use of a single isocenter technique consistently halves delivery time and decreases the integral dose to normal tissue. For small adjacent metastases, which can simultaneously be encompassed within the high-resolution portion of the m3/Novalis mMLC collimator, the use of a single rather than a dual isocenter technique is feasible and generally advantageous.
Collapse
Affiliation(s)
- David Roberge
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, Quebec, H3G 1A4, Canada.
| | | | | |
Collapse
|
27
|
Is smaller better? Comparison of 3-mm and 5-mm leaf size for stereotactic radiosurgery: A dosimetric study. Int J Radiat Oncol Biol Phys 2006. [DOI: 10.1016/j.ijrobp.2006.04.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Clark BG, Teke T, Otto K. Penumbra evaluation of the varian millennium and BrainLAB M3 multileaf collimators. Int J Radiat Oncol Biol Phys 2006. [DOI: 10.1016/j.ijrobp.2005.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Escudé L, Linero D, Mollà M, Miralbell R. Quality assurance for radiotherapy in prostate cancer: Point dose measurements in intensity modulated fields with large dose gradients. Int J Radiat Oncol Biol Phys 2006. [DOI: 10.1016/j.ijrobp.2006.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Linthout N, Verellen D, Tournel K, Storme G. Six dimensional analysis with daily stereoscopic x-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks. Med Phys 2006; 33:504-13. [PMID: 16532958 DOI: 10.1118/1.2165417] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The safety margins used to define the Planning Target Volume (PTV) should reflect the accuracy of the target localization during treatment that comprises both the reproducibility of the patient positioning and the positional uncertainty of the target, so both the inter- and intrafraction motion of the target. Our first aim in this study was to determine the intrafraction motion of patients immobilized with a five-point thermoplastic mask for head and neck treatments. The five-point masks have the advantage that the patient's shoulders as well as the cranial part of the patient's head is covered with the thermoplastic material that improves the overall immobilization of the head and neck region of the patient. Thirteen patients were consecutively assigned to use a five-point thermoplastic mask. The patients were positioned by tracking of infrared markers (IR) fixed to the immobilization device and stereoscopic x-ray images were used for daily on-line setup verification. Repositioning was carried out prior to treatment as needed; rotations were not corrected. Movements during treatment were monitored by real-time IR tracking. Intrafraction motion and rotation was supplementary assessed by a six-degree-of-freedom (6-D) fusion of x-ray images, taken before and after all 385 treatments, with DRR images generated from the planning CT data. The latter evaluates the movement of the patient within the thermoplastic mask independent from the mask movement, where IR tracking evaluates the movement of the mask caused by patient movement in the mask. These two movements are not necessarily equal to each other. The maximum intrafraction movement detected by IR tracking showed a shift [mean (SD; range)] of -0.1(0.7; 6.0), 0.1(0.6; 3.6), -0.2(0.8;5.5) mm in the vertical, longitudinal, and lateral direction, respectively, and rotations of 0.0(0.2; 1.6), 0.0(0.2; 1.7) and 0.2(0.2; 2.4) degrees about the vertical, longitudinal, and lateral axis, respectively. The standard deviations and ranges found with the 6-D fusion demonstrate intrafraction patient displacements of -0.5(1.2; 7.4), 0.3(0.7; 5.3), 0.0(0.7; 5.7) mm in the vertical, longitudinal, and lateral direction, respectively, and rotations of -0.1(0.6; 4.1), 0.1(0.7; 8.3) and -0.2(0.8; 8.2) degrees about the vertical, longitudinal, and lateral axis, respectively. The 6-D fusions are considerably larger (p < 0.05) than detected by IR tracking. This indicates that the external marker tracking underestimates the magnitude of the actual intrafraction motion and rotation of the patient. The intrafraction motion detected for the patients immobilized with a conventional thermoplastic mask was relatively large. The feasibility to reduce this intrafraction movement by the application of alternative five-point thermoplastic mask types was evaluated as a second aim of this study. The preliminary results showed a clear reduction in the range, being an indication for the random movements, of both the intrafraction shift and rotation for both alternative mask types. The 6-D fusion is found a useful tool for a fast evaluation of the actual patient's intrafraction shift and rotation and shows the latter is not negligible and needs to be taken into account additional to the initial setup accuracy when determining the PTV margin.
Collapse
Affiliation(s)
- Nadine Linthout
- Department of Radiotherapy, Oncology Center, Academic Hospital-Free University, Brussels (AZ-VUB), Belgium.
| | | | | | | |
Collapse
|
31
|
Abstract
The dosimetric characteristics of a production pilot multi-leaf collimator (Elekta Beam Modulator, Elekta Oncology Systems, Crawley, UK) having a 4 mm leaf width (at isocentre) have been investigated. Characteristics explored included leaf bank set-up, penumbra width (80-20%) as a function of leaf position, leaf positioning reproducibility, interleaf leakage and leaf transmission. The penumbra values for leaf ends were measured to be between 4.2 and 4.8 mm for various large rectangular fields studied using Kodak X-omat V film at isocentre (1.5 cm deep). Similar films were taken with a standard 1 cm width multi-leaf collimator (MLC) and the penumbra for leaf ends was found to range from 4.3 to 5.2 mm. Other results showed that the rounded leaf tip provided tight control of the penumbra across the leaves' full range of travel. The positioning of the leaves was within a 0.5 mm range when approaching from the same direction. The maximum interleaf leakage was found to be 1.7% and the average leaf transmission less than 1.0%. No major differences were observed in leakage and transmission with changing gantry angle.
Collapse
Affiliation(s)
- I Patel
- North Western Medical Physics, Radiotherapy Department, Rosemere Cancer Centre, Royal Preston Hospital, UK.
| | | | | |
Collapse
|
32
|
Price RA, Paskalev K, McNeeley S, Ma CM. Elongated beamlets: a simple technique for segment and MU reduction for sMLC IMRT delivery on accelerators utilizing 5 mm leaf widths. Phys Med Biol 2005; 50:N235-42. [PMID: 16177479 DOI: 10.1088/0031-9155/50/19/n01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The focus of this work is to demonstrate the effects of using an elongated beamlet to achieve similar dose conformity as achieved with a square beamlet while reducing the number of segments and subsequent MU required. A series of 10 patients were planned for IMRT delivery to the prostate using minimum beamlet sizes of 5x5 mm2 (default scheme), 10x5 mm2 with the short axis parallel to the prostate-rectum interface (scheme 1), and 10x5 mm2 with the short axis perpendicular to the prostate-rectum interface (scheme 2). All other parameters between plans were left unchanged. Plans were appropriately normalized and evaluated for R65, R40, conformity index, total number of segments and MU. All plans were generated using the Corvus inverse planning system. The average number of segments in this study decreased by approximately 49% for both schemes 1 and 2. The subsequent number of MU required decreased by approximately 34.6%. The resultant modified modulation scaling factor (MSFmod) decreased by approximately 34.3%. Additionally, we found that each isodose distribution using scheme 2 would still meet our clinical acceptance criteria with no visible degradation in the dose distribution as compared with the default scheme. In conclusion, we have demonstrated that it is possible to achieve similar results as those obtained using a 5x5 mm2 beamlet with respect to target coverage and critical structure sparing by using strategically oriented elongated beamlets. This technique directly translates to a decreased MSF(mod) allowing for decreased leakage dose to the patient, a decreased risk of exceeding secondary shielding limits in pre-existing vaults, and shorter treatment times.
Collapse
Affiliation(s)
- R A Price
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
33
|
St John TJ, Wagner TH, Bova FJ, Friedman WA, Meeks SL. A geometrically based method of step and shoot stereotactic radiosurgery with a miniature multileaf collimator. Phys Med Biol 2005; 50:3263-76. [PMID: 16177508 DOI: 10.1088/0031-9155/50/14/005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conventional methods of inverse planning for intensity-modulated radiotherapy (IMRT) and intensity-modulated radiosurgery (IMRS) are generally based upon optimizing a set of beam fluence profiles according to a set of dose-volume constraints specified by a human planner. This optimization is generally carried out through an iterative approach that relies upon the optimization of a score, driving the plan's ability to satisfy the user-provided constraints. Following optimization of the fluence distribution, the non-trivial problem of converting the fluence distribution into a set of deliverable, intensity-modulated beams must be solved. A novel approach to solving this IMRS total inverse problem is presented in this paper. The proposed method uses a class solution that provides an optimized dose gradient and a method of designing a conformal plan based on an existing geometrically based optimization algorithm. After developing an optimal fluence distribution, the process then arranges the fluence into a set of simple and efficient MLC beam delivery sequences. The algorithm presented here offers several potential advantages for the application of intensity modulation to radiosurgery treatment planning. The geometrically based optimization process' simplicity requires far less human user input and decision making in the specification of dose and dose-volume constraints than do conventional inverse planning algorithms. This simplicity allows the optimization process to be completed much faster than conventional inverse-planning algorithms, literally seconds compared with at least several minutes. Likewise, the fluence conversion step is a simplified process (compared to conventional IMRT planning), which takes advantage of some simplifications uniquely appropriate to the problem at hand (IMRS). The converted, deliverable IMRS beams allow superior conformity and dose gradient relative to conventional IMRS planning or 3DCRT radiosurgery planning. Another benefit is that the number of beam intensity levels is greatly reduced, from hundreds to as few as a half-dozen intensity levels. Finally, since the treatment plan optimization process is based upon proven principles applicable to optimizing radiosurgery (rather than the general problem of optimizing fractionated radiotherapy plans), the plans generated and deliverable with this method of IMRS are potentially superior to those produced by conventional inverse-planning methods of IMRT/IMRS.
Collapse
|
34
|
Wang L, Hoban P, Paskalev K, Yang J, Li J, Chen L, Xiong W, Ma CCM. Dosimetric advantage and clinical implication of a micro-multileaf collimator in the treatment of prostate with intensity-modulated radiotherapy. Med Dosim 2005; 30:97-103. [PMID: 15922176 DOI: 10.1016/j.meddos.2005.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/11/2004] [Indexed: 11/28/2022]
Abstract
This paper investigates the dosimetric benefits of a micro-multileaf (4-mm leaf width) collimator (mMLC) for intensity-modulated radiation therapy (IMRT) treatment planning of the prostate cancer and its potential application for dose escalation and hypofractionation. We compared treatment plans for IMRT delivery using 2 different multileaf collimator (MLC) leaf widths (4 vs. 10 mm) for 10 patients with prostate cancer. Treatment planning was performed on the XknifeRT2 treatment planning system. All beams and optimization parameters were identical for the mMLC and MLC plans. All of the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose (74 Gy). The differences in dose distribution between the 2 groups of plans using the mMLC and the MLC were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. Significant reductions in the volume of rectum receiving medium to higher doses were achieved using the mMLC. The average decrease in the volume of the rectum receiving 40, 50, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p-values less than 0.0001 for V40 and V50 and 0.012 for V60. The mean dose reductions for D17 and D35 for the rectum were 20.0% (p < 0.0001) and 18.3% (p < 0.0002), respectively, when compared to those with the MLC plans. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 32%. In the high-dose range, there was no significant difference in the dose deposited in the "hottest" 1 cc of the rectum between the 2 MLC plans for all cases (p > 0.78). Because of the reduction of rectal volume receiving medium to higher doses, dose to the prostate target can be escalated by about 20 Gy to over 74 Gy, while keeping the rectal dose (either denoted by D17 or D35) the same as those with the use of the MLC. The maximum achievable dose, derived when the rectum is allowed to reach the tolerance level, was found to be in the range of 113-172 Gy (using the tolerance value of D17). We conclude that the use of the mMLC for IMRT of the prostate may facilitate dose hypofractionation due to its dosimetric advantage in significantly improving the DVH parameters of the prostate and critical organs. When used for conventional fractionation scheme, mMLC for IMRT of the prostate may reduce the toxicity to the critical organs.
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 degrees . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments.
Collapse
Affiliation(s)
- R Topolnjak
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
36
|
Nill S, Tücking T, Münter MW, Oelfke U. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiother Oncol 2005; 75:106-11. [PMID: 15878108 DOI: 10.1016/j.radonc.2005.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 12/01/2004] [Accepted: 02/17/2005] [Indexed: 11/28/2022]
Abstract
PURPOSE A planning study to analyze the impact of different leaf widths on the achievable dose distributions with intensity modulated radiation therapy (IMRT). METHODS Five patients (3 intra- and 2 extra-cranial) with projected planning target volume (PTV) sizes smaller than 10 cm by 10 cm were re-planned with four different multileaf collimators (MLC). Two internal collimators with an isocentric leaf width of 4 and 10 mm and two add-on collimators with an isocentric leaf width of 2.75 and were evaluated. The inverse treatment planning system KonRad (Siemens Medical Solutions) was used to create IMRT 'step & shoot' plans. For each patient the same arrangement of beams and the same parameters for the optimization were used for all MLCs. The beamlet size for all treatment plans was chosen to coincide with the leaf width of the respective MLC. To evaluate the treatment plans 3D dose distributions and dose volume histograms were analyzed. As indicators for the quality of the PTV dose distribution the minimum dose, maximum dose and the standard deviation were used. For the organs at risk (OAR) the equivalent uniform dose (EUD) was calculated. To measure the dose coverage of the PTV the volume (V(90)) that received doses higher than 90% of the prescribed dose was calculated where for the conformity the dose conformity index given by Baltas et al. was determined. RESULTS The MLC with the smallest leaf width yields the best mean value of all five patients for the PTV coverage and for the conformity. For the MLCs with the same leaf width, the add-on MLC leads to superior treatment plans than the internal MLC. This is due to the sharper penumbra of the add-on MLC. The number of IMRT field segments to deliver increased by approximately a factor of two if 2. MLC leafs are used instead of the standard 10 mm leafs. In case of the para-spinal patients the EUD value for the spinal cord is only reduced slightly by using MLCs with leaf widths smaller than 5 mm. For the intra-cranial the EUD value for some organs improved with reduced leaf widths while for some organs the 10 mm MLC leafs give comparable values. CONCLUSION As expected the MLC with the smallest leaf width always yields the best PTV coverage. Reducing the leaf width from 4 to 2.75 mm results in a slight enhancement of the PTV coverage. With the selected organ parameters no significant improvement for most OAR was found. The disadvantage of the reduction of the leaf width is the increasing number of segments due to the more complex fluence patterns and therefore an increased delivery time.
Collapse
Affiliation(s)
- Simeon Nill
- Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Abstract
Stereotactic radiosurgery with several static conformal beams shaped by a micro multileaf collimator (microMLC) is used to treat small irregularly shaped brain lesions. Our goal is to perform Monte Carlo calculations of dose distributions for certain treatment plans as a verification tool. A dedicated microMLC component module for the BEAMnrc code was developed as part of this project and was incorporated in a model of the Varian CL2300 linear accelerator 6 MV photon beam. As an initial validation of the code, the leaf geometry was visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. The leaf dimensions were measured and the leaf material density and interleaf air gap were chosen to match the simulated leaf leakage profiles with film measurements in a solid water phantom. A comparison between Monte Carlo calculations and measurements (diode, radiographic film) was performed for square and irregularly shaped fields incident on flat and homogeneous water phantoms. Results show that Monte Carlo calculations agree with measured dose distributions to within 2% and/or 1 mm except for field size smaller than 1.2 cm diameter where agreement is within 5% due to uncertainties in measured output factors.
Collapse
Affiliation(s)
- Jason Belec
- Medical Physics Department, McGill University Health Centre, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Québec, H3G1A4, Canada
| | | | | |
Collapse
|
38
|
Tercier PA, Aroua A, Valley JF. Optimisation in stereotactic radiosurgery of AVMs: I. Mathematical considerations. Z Med Phys 2005; 14:213-21. [PMID: 15656103 DOI: 10.1078/0939-3889-00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One forward-planning method and five inverse-planning methods for optimisation of treatment in radiation therapy were compared in the particular case of radiosurgery with micro-multi-leaves collimator (MMLC) and arc therapy. The "manual" method, two matrix methods (singular value decomposition and non-negative least square fit), two gradient methods (quasi-Newton and conjugate gradient algorithms) and the "simulated annealing" stochastic method were investigated. The performance of these methods was assessed in terms of the speed of convergence to an optimum, the ability to account for the organs at risk, and probability of targeted success. The study employed an adapted version of the GRATIS treatment planning system. A group of 22 patients previously treated by arc therapy for arteriovenous malformations (AVMs) were studied to evaluate the performance of the various optimisation methods for MMLC and arc therapy. The conjugate gradient method proved to be the most appropriate for most cases.
Collapse
|
39
|
de Pooter JA, Essers M, Nowak PJCM, de Pan C, Heijmen BJM, Levendag PC. Stereotactic arc therapy for small elongated tumors using cones and collimator jaws; dosimetric and planning aspects. Med Phys 2005; 31:3444-51. [PMID: 15651627 DOI: 10.1118/1.1824193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stereotactic arc treatment of small intracranial tumors is usually performed with arcs collimated by circular cones, resulting in treatment volumes which are basically spherical. For nonspherical lesions this results in a suboptimal dose distribution. Multiple isocenters may improve the dose conformity for these lesions, at the cost of large overdosages in the target volume. To achieve improved dose conformity as well as dose homogeneity, the linac jaws (with a minimum distance of 1.0 cm to the central beam axis) can routinely be used to block part of the circular beams. The purpose of this study was to investigate the feasibility of blocking cones with diameters as small as 1.0 cm and a minimum distance between the jaw and the central beam axis of 0.3 cm. First, the reproducibility in jaw positioning and resulting dose delivery on the treatment unit were assessed. Second, the accuracy of the TPS dose calculation for these small fields was established. Finally, clinically applied treatment plans using nonblocked cones were compared with plans using the partially blocked cones for several treatment sites. The reproducibility in dose delivery on our Varian Clinac 2300 C/D machines on the central beam axis is 0.8% (1 SD). The accuracy of the treatment planning system dose calculation algorithm is critically dependent on the used fits for the penumbra and the phantom scatter. The average deviation of calculated from measured dose on the central beam axis is -1.0%+/-1.4% (1 SD), which is clinically acceptable. Partial cone blocking results in improved dose distributions for elongated tumors, such as vestibular schwannoma and uveal melanoma. Multiple isocenters may be avoided. The technique is easy to implement and requires no additional workload.
Collapse
Affiliation(s)
- J A de Pooter
- Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Baumert BG, Norton IA, Lomax AJ, Davis JB. Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions. Int J Radiat Oncol Biol Phys 2004; 60:1314-24. [PMID: 15519805 DOI: 10.1016/j.ijrobp.2004.06.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 06/22/2004] [Accepted: 06/28/2004] [Indexed: 11/23/2022]
Abstract
PURPOSE This study evaluates photon beam intensity-modulated stereotactic radiotherapy (IMSRT) based on dynamic leaf motion of a micromultileaf collimator (mMLC), proton beams, and intensity-modulated proton therapy (IMPT) with respect to target coverage and organs at risk. METHODS AND MATERIALS Dose plans of 6 stereotactically treated patients were recalculated for IMSRT by use of the same field setup and an inverse planning algorithm. Proton and IMPT plans were calculated anew. Three different tumor shapes, multifocal, ovoid, and irregular, were analyzed, as well as dose to organs-at-risk (OAR) in the vicinity of the planning target volume (PTV). Dose distributions were calculated from beam-setup data for a manual mMLC for stereotactically guided conformal radiotherapy (SCRT), a dynamic mMLC for IMSRT, the spot-scanning technique for protons, and a modified spot-scanning technique for IMPT. SCRT was included for a part of the comparison. Criteria for assessment were PTV coverage, dose-volume histograms (DVH), volumes of specific isodoses, and the dose to OAR. RESULTS Dose conformation to the PTV is equally good for all three techniques and tumor shapes considered. The volumes of the 90% and 80% isodose were comparable for all techniques. For the 50% isodose volume, a divergence between the two modes was seen. In 3 cases, this volume is smaller for IMSRT, and in the 3 other cases, it is smaller for IMPT. This difference was even more pronounced for the volumes of the 30% isodose; IMPT shows further improvement over conventional protons. OAR in concavities (e.g., the brainstem) were similarly well spared by protons and IMSRT. IMPT spares critical organs best. Fewer proton beams are required to achieve similar results. CONCLUSIONS The addition of intensity modulation improves the conformality of mMLC-based SCRT. Conformation of dose to the PTV is comparable for IMSRT, protons, and IMPT. Concerning the sparing of OAR, IMSRT is equivalent to IMPT, and IMPT is superior to conventional protons. The advantage of protons lies in the lower integral dose.
Collapse
|
41
|
Linthout N, Verellen D, Van Acker S, Storme G. A simple theoretical verification of monitor unit calculation for intensity modulated beams using dynamic mini-multileaf collimation. Radiother Oncol 2004; 71:235-41. [PMID: 15110458 DOI: 10.1016/j.radonc.2004.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/04/2003] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
A spreadsheet based program is presented to perform an independent Monitor Unit (MU) calculation verification for the Quality Assurance (QA) of Intensity Modulated Radiation Therapy (IMRT) using Dynamic MultiLeaf Collimation (DMLC). The computed dose value is compared to the planned dose by calculating the percent dose difference per Intensity Modulated Beam (IMB) and absolute dose difference per IMB. The proposed acceptability levels are +/-5.0% or +/-2.0 cGy for the percent dose difference per IMB and the absolute dose difference per IMB, respectively. For percent dose difference per treatment, an acceptability level of +/-2.0% is proposed. The presented program is considered adequate for checking the treatment plans calculated for IMRT treatments using DMLC as a part of the QA procedure.
Collapse
Affiliation(s)
- Nadine Linthout
- Department of Radiotherapy, Oncology Center, Academic Hospital-Free University Brussels, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | | | | | | |
Collapse
|
42
|
Leal A, Sánchez-Doblado F, Arráns R, Capote R, Lagares JI, Pavón EC, Roselló J. MLC leaf width impact on the clinical dose distribution: a Monte Carlo approach. Int J Radiat Oncol Biol Phys 2004; 59:1548-59. [PMID: 15275743 DOI: 10.1016/j.ijrobp.2004.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 03/09/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
PURPOSE The influence of the multileaf collimator (MLC) leaf width on the dose distribution in patients treated with conformal radiotherapy and intensity-modulated radiotherapy has been analyzed. This study was based on the Monte Carlo simulation with the beams generated by a linac with the double-focused MLC. MATERIALS AND METHODS The transmission through the leaves and the exact shape of the penumbra regions are difficult to model by treatment planning system algorithms. An accurate assessment of the dose variations due to the leaf width change can be achieved by means of Monte Carlo simulation. The BEAM/EGS4 code was used at the Hospital of the Virgen Macarena to model a Siemens PRIMUS linac, featuring an MLC with a leaf width projecting 1 cm at the isocenter. Based on this real model, a virtual head was designed while allowing for a variation of the leaf width projection. Both the real linac and the virtual linac, with leaves projecting 0.5 cm, were used to obtain the dose distributions for several treatments. A few disease sites, including the prostate, head and neck, and endometrium, were selected for the design of the conformal and intensity-modulated radiotherapy treatments with a forward planning algorithm sensitive to the different shapes of the volumes of interest. Isodose curves, differential matrix, gamma function, and the dose-volume histograms (DVHs) corresponding to both MLC models were obtained for all cases. The tumor control probability and the normal tissue complication probability were derived for those cases studied featuring the greatest differences between results for both MLCs. RESULTS The impact on the DVHs of changing leaf width projections at the isocenter from 1.0 cm to 0.5 cm was low. Radiobiologic models showed slightly better tumor control probability/normal tissue complication probability values using the virtual MLC with a leaf width projecting 0.5 cm at isocenter in those cases presenting greater differences in the DVHs. CONCLUSIONS The impact on the clinical dose distribution due to the MLC leaf width change is low based on the design and conditions used in this study.
Collapse
Affiliation(s)
- Antonio Leal
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Seville, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Topolnjak R, van der Heide UA, Raaymakers BW, Kotte ANTJ, Welleweerd J, Lagendijk JJW. A six-bank multi-leaf system for high precision shaping of large fields. Phys Med Biol 2004; 49:2645-56. [PMID: 15272679 DOI: 10.1088/0031-9155/49/12/012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 degrees relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm.
Collapse
Affiliation(s)
- R Topolnjak
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Tobler M, Leavitt DD, Watson G. Optimization of the primary collimator settings for fractionated IMRT stereotactic radiotherapy. Med Dosim 2004; 29:72-9. [PMID: 15191751 DOI: 10.1016/j.meddos.2004.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Accepted: 06/01/2002] [Indexed: 11/20/2022]
Abstract
Advances in field-shaping techniques for stereotactic radiosurgery/radiotherapy have allowed dynamic adjustment of field shape with gantry rotation (dynamic conformal arc) in an effort to minimize dose to critical structures. Recent work evaluated the potential for increased sparing of dose to normal tissues when the primary collimator setting is optimized to only the size necessary to cover the largest shape of the dynamic micro multi leaf field. Intensity-modulated radiotherapy (IMRT) is now a treatment option for patients receiving stereotactic radiotherapy treatments. This multisegmentation of the dose delivered through multiple fixed treatment fields provides for delivery of uniform dose to the tumor volume while allowing sparing of critical structures, particularly for patients whose tumor volumes are less suited for rotational treatment. For these segmented fields, the total number of monitor units (MUs) delivered may be much greater than the number of MUs required if dose delivery occurred through an unmodulated treatment field. As a result, undesired dose delivered, as leakage through the leaves to tissues outside the area of interest, will be proportionally increased. This work will evaluate the role of optimization of the primary collimator setting for these IMRT treatment fields, and compare these results to treatment fields where the primary collimator settings have not been optimized.
Collapse
Affiliation(s)
- Matt Tobler
- University of Utah Health Science Center, Department of Radiation Oncology, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
45
|
Wang L, Movsas B, Jacob R, Fourkal E, Chen L, Price R, Feigenberg S, Konski A, Pollack A, Ma C. Stereotactic IMRT for prostate cancer: dosimetric impact of multileaf collimator leaf width in the treatment of prostate cancer with IMRT. J Appl Clin Med Phys 2004; 5:29-41. [PMID: 15738911 PMCID: PMC5723465 DOI: 10.1120/jacmp.v5i2.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The focus of this work is the dosimetric impact of multileaf collimator (MLC) leaf width on the treatment of prostate cancer with intensity-modulated radiation therapy (IMRT). Ten patients with prostate cancer were planned for IMRT delivery using two different MLC leaf widths--4mm and 10mm--representing the Radionics micro-multileaf collimator (mMLC) and Siemens MLC, respectively. Treatment planning was performed on the XKnifeRT2 treatment-planning system (Radionics, Burlington, MA). All beams and optimization parameters were identical for the mMLC and MLC plans. All the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose. The differences in dose distribution between the two different plans were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. We specifically compared the volume of rectum receiving 40 Gy (V40), 50 Gy (V50), 60 Gy (V60), the dose received by 17% and 35% of rectum (D17 and D35), and the maximum dose to 1 cm3 of the rectum for a prescription dose of 74 Gy. For the urinary bladder, the dose received by 25% of bladder (D25), V40, and the maximum dose to 1 cm3 of the organ were recorded. For PTV we compared the maximum dose to the "hottest" 1 cm3 (Dmax1 cm3) and the dose to 99% of the PTV (D99). The dose inhomogeneity in the target, defined as the ratio of the difference in Dmax1 cm3 and D99 to the prescribed dose, was also compared between the two plans. In all cases studied, significant reductions in the volume of rectum receiving doses less than 65 Gy were seen using the mMLC. The average decrease in the volume of the rectum receiving 40 Gy, 50 Gy, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p < 0.0001 for V40 and V50 and p < 0.012 for V60. The mean dose reductions for D17 and D35 for the rectum using the mMLC were 20.4% (p < 0.0001) and 18.3% (p < 0.0002), respectively. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 29%. In the high-dose range, there was no significant difference in the dose deposited in the "hottest" 1 cm3 of the rectum between the two plans for all cases (p > 0.78). In conclusion, the use of the mMLC for IMRT of the prostate resulted in significant improvement in the DVH parameters of the prostate and critical organs, which may improve the therapeutic ratio.
Collapse
Affiliation(s)
- L Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shiu A, Parker B, Ye J, Lii J. An integrated treatment delivery system for CSRS and CSRT and clinical applications. J Appl Clin Med Phys 2004; 4:261-73. [PMID: 14604415 PMCID: PMC5724455 DOI: 10.1120/jacmp.v4i4.2496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An integrated treatment delivery system for conformal stereotactic radiosurgery (CSRS) and radiotherapy (CSRT) has been developed through a collaboration involving Siemens Medical Systems, Inc., Tyco/Radionics, Inc., and The University of Texas M. D. Anderson Cancer Center. The system consists of a 6-MV linear accelerator (LINAC) equipped with a Tyco/Radionics miniature multileaf collimator (mMLC). For the conventional SRS treatment, the circular collimator housing can be attached to the opening window of the mMLC. The treatment delivery system is integrated with a radiotherapy treatment planning system and a record-and-verify system. The purpose of this study is to report the characteristics, performance, benefits, and the clinical applications of this delivery system. The technical specifications of the LINAC and mMLC were tested, and all the specifications were met. The 80% to 20% penumbral width for each mMLC leaf is approximately 3 mm and is nearly independent of the off-axis positions of a leaf. The maximum interleaf leakage is 1.4% (1.1% on average) and the maximum intra-leaf leakage is 1.0% (0.9% on average). The leaf position precision is better than 0.5 mm for all the leaves. The integration of the SRS/SRT treatment planning system, mMLC, and LINAC has been evaluated successfully for transferring the patient treatment data file through radiotherapy treatment planning system to the patient information and treatment record-and-verify server and the mMLC controller. Subsequently, the auto-sequential treatment delivery for SRS, CSRS/CSRT, and the step-and-shoot intensity-modulated radiotherapy has also been tested successfully. The accuracy of dose delivery was evaluated for a 2-cm spherical target in a Radiological Physics Center SRS head phantom with GAFChromic films and TLD. Five non-coplanar arcs, using a 2-cm diameter circular collimator, were used for this simulation treatment. The accuracy to aim the center of the spherical target was within 0.5 mm and the deviation of dose delivery to the isocenter of the target was within 2% of the calculated dose. For the irregularly shaped tumor, a tissue-equivalent head phantom was used to evaluate the accuracy of dose delivery for using either geometric conformal treatment or IMRT. The accuracy of dose delivery to the isocenter was within 2% and 3% of the calculated dose, respectively. From October 26, 1999 to September 30, 2002, we treated over 400 SRS patients and 70 SRT patients. Four representative cases are presented to illustrate the capabilities of this dedicated unit in performing conventional SRS, CSRS, and CSRT. For all the cases, the geometric conformal-plan dose distributions showed a high degree of conformity to the target shape. The degree of conformity can be evaluated using the target-volume-ratio (TVR). Our preferred TVR values for highly conformed dose distributions range from 1.6 to 2.0. The patient setup reproducibility for the Gill-Thomas-Cosman (GTC) noninvasive head frame ranges from 0.5 to 1 mm, and the head and neck noninvasive frame is within 2 mm. The integrated treatment delivery system offers excellent conformation for complicated planning target volumes with the stereotactic setup approach, ensuring that dose delivery can be achieved within the specified accuracy. In addition, the treatment time is comparable with that of single isocenter multiple-arc treatments.
Collapse
MESH Headings
- Brain Neoplasms/radiotherapy
- Brain Neoplasms/secondary
- Brain Neoplasms/surgery
- Carcinoma, Renal Cell/radiotherapy
- Carcinoma, Renal Cell/secondary
- Humans
- Kidney Neoplasms/pathology
- Lymphoma, Large B-Cell, Diffuse/radiotherapy
- Nasopharyngeal Neoplasms/radiotherapy
- Neoplasm Recurrence, Local/radiotherapy
- Particle Accelerators/instrumentation
- Radiosurgery/instrumentation
- Radiosurgery/methods
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Conformal/instrumentation
- Radiotherapy, Conformal/methods
- Radiotherapy, High-Energy/instrumentation
- Radiotherapy, High-Energy/methods
Collapse
Affiliation(s)
- A. Shiu
- Department of Radiation PhysicsThe University of Texas M. D. Anderson Cancer Center1515 Holcombe BoulevardHoustonTexas77030
| | - B. Parker
- Department of Radiation PhysicsThe University of Texas M. D. Anderson Cancer Center1515 Holcombe BoulevardHoustonTexas77030
| | - J.‐S. Ye
- Department of Radiation PhysicsThe University of Texas M. D. Anderson Cancer Center1515 Holcombe BoulevardHoustonTexas77030
| | - J. Lii
- Department of Radiation PhysicsThe University of Texas M. D. Anderson Cancer Center1515 Holcombe BoulevardHoustonTexas77030
| |
Collapse
|
47
|
Baumert BG, Norton IA, Davis JB. Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 2003; 57:580-92. [PMID: 12957272 DOI: 10.1016/s0360-3016(03)00587-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE This study evaluates a possible advantage of intensity-modulated stereotactic radiotherapy (IMSRT) over stereotactic conformal radiotherapy (SCRT) in the treatment of lesions in the base of the skull. METHODS AND MATERIALS Ten patients (7 with a skull base meningioma) planned for routine SCRT were replanned for IMSRT. The criteria for comparison were the same for both methods: optimal dose to the planning target volume (PTV) and optimal sparing of the organs at risk (OAR). For SCRT, sparing of OAR was achieved by conformal avoidance using 5-6 fields. The IMSRT inverse planning process used optimized OAR sparing through user-defined dose constraints. Dose to the PTV and OAR were assessed by dose-volume histograms, maximum dose, 2 conformity indices, and volumes of relevant isodoses. RESULTS The conformity index is consistently higher for IMSRT, the largest improvement being for the multifocal and irregular cases. Volumes of the 90% and 80% isodoses were smaller for IMSRT, whereas the volume of the 30% isodose was larger for IMSRT in 6 cases. The maximum dose was consistently higher for IMSRT (mean values 102% and 108% for SCRT and IMSRT, respectively). Sparing of OAR was better with IMSRT, especially for those OARs situated in or near a concave PTV. CONCLUSIONS In terms of PTV coverage, there is an advantage in using IMSRT for all target shapes, but especially for irregular and concave targets. The dose to OAR is lower with IMSRT, although the volume of normal tissue receiving a low dose can be larger than for SCRT.
Collapse
Affiliation(s)
- Brigitta G Baumert
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
48
|
Cheng CW, Wong JR, Ndlovu AM, Das IJ, Schiff P, Uematsu M. Dosimetric evaluation and clinical application of virtual mini-multileaf collimator. Am J Clin Oncol 2003; 26:e37-44. [PMID: 12796614 DOI: 10.1097/01.coc.0000072510.17278.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the major concerns with multileaf collimators (MLC) is the jagged field edge that produces a larger penumbra compared with that produced by a Cerrobend block. The dosimetric undulation of the MLC can be minimized by replacing an existing MLC with a mini-MLC, an expensive replacement, or by software implementation, which essentially converts a regular MLC into a virtual mini-MLC. In this study, the dosimetry in the penumbra region of a virtual mini-MLC replacing the Cerrobend block is investigated for clinical applications. HD270, a software program implemented by Siemens (Concord, CA), combines the use of an MLC and a table translation perpendicular to the leaf plane to produce a smooth field edge, thus reducing isodose undulation. Three different step resolutions are available: 5 mm, 3 mm, and 2 mm. Using film dosimetry, the penumbra regions are studied at two different depths for clinical blocks and corresponding MLC setup, as well as HD270 with different resolutions for both 6-MV and 15-MV x-ray beams. The dose delivery time for HD270 on auto-sequencing mode is compared with the use of Cerrobend blocks. The clinical applications of HD270 in head-and-neck (head and neck) and prostate treatments are investigated. For single-field irradiation, the 80-20% penumbra widths for both the 45 degrees block and the circular block are reduced with HD270 compared with MLC for both 6 and 15 MV at different depths. At 2-mm resolution, the scalloping isodose lines (IDLs) with MLC completely disappear, although the penumbra is still larger than the Cerrobend block. On the other hand, the difference in dose undulations between 2-mm and 3-mm resolution is small. In the head and neck irradiation, the 80-20% widths with HD270 are 1 to 2 mm less than MLC, but they are still 2 mm wider than with a Cerrobend block. The 50% IDL is reduced by 2 mm with HD270 compared with MLC, which provides safety near spinal cord. Dose-volume histogram (DVH) calculations for the different shielding techniques indicate that the HD270 improves the spinal cord dose distribution significantly compared with MLC. A similar improvement in dose undulation is observed for the prostate case. In the dose region, >60% of the prescribed dose, there is approximately 10% less irradiated volume for the rectum when HD270 (3 mm resolution) is employed compared with MLC. The treatment time was compared with that from the Cerrobend block, and it was found that even at 3-mm resolution, there is a 20% reduction in treatment time in a head and neck treatment; with a 2-mm resolution, there is a 15% increase in time. The isodose undulation due to MLC can be significantly reduced with the HD270. Clinical application with HD270 for head and neck and prostate irradiation provides a smaller penumbra region compared with MLC, although it still gives a larger one compared with the Cerrobend block. In the clinical cases presented in this study, the 3-mm resolution is the most effective in improving the penumbra and delivery time. The HD270 implementation is a versatile and cost-effective solution for reducing MLC undulation.
Collapse
Affiliation(s)
- C-W Cheng
- Department of Radiation Oncology, Morristown Memorial Hospital, Morristown, NJ, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Linthout N, Verellen D, Van Acker S, De Cock M, Storme G. Dosimetric evaluation of partially overlapping intensity modulated beams using dynamic mini-multileaf collimation. Med Phys 2003; 30:846-55. [PMID: 12772992 DOI: 10.1118/1.1562170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The dose distribution resulting from partially overlapping intensity modulated beams (IMBs) assigned to different isocenters for the treatment of the same planning target volume (PTV) was evaluated. These partially overlapping IMBs are used in static intensity modulated radiation therapy (IMRT) treatments with the Novalis system using the mini-MultiLeaf Collimator (mini-MLC) in Dynamic MultiLeaf Collimation (DMLC) mode. The resultant dose distribution was verified dosimetrically for a cylindrical target defined in a homogeneous cubic phantom. The phantom positioning can introduce dose nonuniformities in the resultant dose distribution by nonperfect positioning of the isocenters in accordance with each other. The dose inhomogeneities are quantified mathematically by summation of the dose profiles of the used IMBs and experimentally by measurement of the resulting dose profiles with radiographic film and thermoluminescent detectors (TLD). The mathematical estimation of the resulting dose profile of the treatment with a perfect positioning of the isocenters showed a good agreement with the planned dose profile. The magnitude of the maximum dose inhomogeneities introduced by the simulated supplementary shifts between the isocenters decreases by -8.54% mm(-1) as the shift changes from -0.30 +/- 0.10 cm to +0.30 +/- 0.10 cm. The TLD measurements showed a similar variation of the magnitude of the maximum dose inhomogeneities: -8.77% mm(-1). The amount of dose variation was underestimated with the radiographic film measurements, which showed a variation of -7.17% mm(-1). The film measurements demonstrated that the magnitude of the introduced maximum dose inhomogeneities did not alter significantly throughout the PTV. The approach of using partially overlapping IMBs assigned to different isocenters to enlarge the treatment region introduces smaller dose inhomogeneities in the resultant dose distribution than when abutting treatment fields are used. The resultant dose distribution of this treatment technique is less sensitive to positioning errors of the used treatment isocenters.
Collapse
Affiliation(s)
- Nadine Linthout
- Department of Radiotherapy, Oncology Center, Academic Hospital-Free University, Brussels (AZ-VUB), Belgium.
| | | | | | | | | |
Collapse
|
50
|
Georg D, Dieckmann K, Bogner J, Zehetmayer M, Pötter R. Impact of a micromultileaf collimator on stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 2003; 55:881-91. [PMID: 12605965 DOI: 10.1016/s0360-3016(02)04119-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To evaluate the impact of a micro multileaf collimator (mMLC) on Linac-based stereotactic radiotherapy (SRT) of uveal melanoma by comparing circular arc with static conformal, dynamic arc, and intensity-modulated SRT. MATERIALS AND METHODS Forty uveal melanoma patients were selected from approximately 100 patients treated with SRT since 1996. For each patient, four treatment plans (BrainSCAN XL, V5.0) were made: conventional arc, static conformal, dynamic arc plan, and intensity-modulated radiotherapy (IMRT). The goal of treatment planning was to fully encompass the planning target volume (PTV) by the 80% isodose while minimizing doses to the optic nerve and lens. The following parameters were evaluated: target conformity; target homogeneity; ratio of the target volume and 50% isodose volume; normal tissue receiving doses >/=80%, >/=50%, and >/=20%; central nervous system volume irradiated to >/=20%; optical nerve volume irradiated >/=50%, D(max) of the lens; lens volume receiving >/=20%; and monitor units. RESULTS PTVs ranged from 0.68 to 4.90 cm(3) (mean 1.97 +/- 0.97 cm(3)). The average reduction of the prescription isodose volume was 1-1.5 cm(3) for conformal (range 2.6-0.3 cm(3)), dynamic arc (range 2.5-0.3 cm(3)), and IMRT plans (range 3.9-0.1 cm(3)), compared with conventional arc therapy. Central nervous system volumes irradiated to doses >/=20% were smallest for conventional or dynamic arc treatments. Average target dose homogeneity values were 1.74 +/- 0.50 for arc, 1.27 +/- 0.02 for static mMLC, 1.26 +/- 0.01 for dynamic arc, and 1.15 +/- 0.03 for IMRT plans. IMRT helped to reduce doses to the lens but did not provide an advantage for optical nerve sparing. When applying IMRT, the monitor units increased by approximately one-third compared with static mMLC-based SRT. CONCLUSIONS Conformal mMLC and dynamic arc SRT are the treatment options of choice for Linac-based SRT of uveal melanoma. They present dosimetric advantages, while being highly efficient in treatment planning and delivery.
Collapse
Affiliation(s)
- Dietmar Georg
- Department of Radiotherapy and Radiobiology, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|