1
|
Mokhtari Dorostkar M, Rasouli FS, Salehkoutahi SM. A simulation study on proton accelerator-based sources for BNCT of shallow tumors. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2022.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
3
|
A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit. BIOLOGY 2021; 10:biology10030174. [PMID: 33652642 PMCID: PMC7996903 DOI: 10.3390/biology10030174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
(1) Background:The quality of neutron beams for Boron Neutron Capture Therapy (BNCT) is currently defined by its physical characteristics in air. Recommendations exist to define whether a designed beam is useful for clinical treatment. This work presents a new way to evaluate neutron beams based on their clinical performance and on their safety, employing radiobiological quantities. (2) Methods: The case study is a neutron beam for deep-seated tumors from a 5 MeV proton beam coupled to a beryllium target. Physical Figures of Merit were used to design five beams; however, they did not allow a clear ranking of their quality in terms of therapeutic potential. The latter was then evaluated based on in-phantom dose distributions and on the calculation of the Uncomplicated Tumor Control Probability (UTCP). The safety of the beams was also evaluated calculating the in-patient out-of-beam dosimetry. (3) Results: All the beams ensured a UTCP comparable to the one of a clinical beam in phantom; the safety criterion allowed to choose the best candidate. When this was tested in the treatment planning of a real patient treated in Finland, the UTCP was still comparable to the one of the clinical beam. (4) Conclusions: Even when standard physical recommendations are not met, radiobiological and dosimetric criteria demonstrate to be a valid tool to select an effective and safe beam for patient treatment.
Collapse
|
4
|
A study of the simulation of the influence on formed neutron spectrum when Li target was covered with polyimide protective film. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Farhad Masoudi S, Ghiasi H, Harif M, Rasouli FS. An electron linac-based system for BNCT of shallow tumors. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Zaidi L, Belgaid M, Taskaev S, Khelifi R. Beam shaping assembly design of 7Li(p,n) 7Be neutron source for boron neutron capture therapy of deep-seated tumor. Appl Radiat Isot 2018; 139:316-324. [PMID: 29890472 DOI: 10.1016/j.apradiso.2018.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 03/11/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
The development of a medical facility for boron neutron capture therapy at Budker Institute of Nuclear Physics is under way. The neutron source is based on a tandem accelerator with vacuum insulation and lithium target. The proposed accelerator is conceived to deliver a proton beam around 10 mA at 2.3 MeV proton beam. To deliver a therapeutic beam for treatment of deep-seated tumors a typical Beam Shaping Assembly (BSA) based on the source specifications has been explored. In this article, an optimized BSA based on the 7Li(p,n)7Be neutron production reaction is proposed. To evaluate the performance of the designed beam in a phantom, the parameters and the dose profiles in tissues due to the irradiation have been considered. In the simulations, we considered a proton energy of 2.3 MeV, a current of 10 mA, and boron concentrations in tumor, healthy tissues and skin of 52.5 ppm, 15 ppm and 22.5 ppm, respectively. It is found that, for a maximum punctual healthy tissue dose seated to 11 RBE-Gy, a mean dose of 56.5 RBE Gy with a minimum of 52.2 RBE Gy can be delivered to a tumor in 40 min, where the therapeutic ratio is estimated to 5.38. All of these calculations were carried out using the Monte Carlo MCNP code.
Collapse
Affiliation(s)
- L Zaidi
- University of Science and Technology Houari Boumediene, Faculty of Physics, SNIRM Laboratory, BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria.
| | - M Belgaid
- University of Science and Technology Houari Boumediene, Faculty of Physics, SNIRM Laboratory, BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria
| | - S Taskaev
- Novosibirsk State University, st. Pirogova 2, Novosibirsk 630090, Russia; Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrentieva 11, Novosibirsk 630090, Russia
| | - R Khelifi
- Saad Dahlab University, Departement of Physics, LPTHIRM Laboratory, BP 270 Soumaa, Algeria
| |
Collapse
|
7
|
Harling OK, Riley KJ, Newton TH, Wilson BA, Bernard JA, Hu LW, Fonteneau EJ, Menadier PT, Ali SJ, Sutharshan B, Kohse GE, Ostrovsky Y, Stahle PW, Binns PJ, Kiger WS, Busse PM. The Fission Converter-Based Epithermal Neutron Irradiation Facility at the Massachusetts Institute of Technology Reactor. NUCL SCI ENG 2017. [DOI: 10.13182/nse02-a2258] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- O. K. Harling
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - K. J. Riley
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - T. H. Newton
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - B. A. Wilson
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - J. A. Bernard
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - L-W. Hu
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - E. J. Fonteneau
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - P. T. Menadier
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - S. J. Ali
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - B. Sutharshan
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - G. E. Kohse
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - Y. Ostrovsky
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - P. W. Stahle
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - P. J. Binns
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - W. S. Kiger
- Massachusetts Institute of Technology Nuclear Engineering Department and Nuclear Reactor Laboratory 138 Albany Street, Cambridge, Massachusetts 02139
| | - P. M. Busse
- Beth Israel-Deaconess Medical Center, Department of Radiation Oncology 330 Brookline Avenue, Boston, Massachusetts 02215
| |
Collapse
|
8
|
Rasouli FS, Farhad Masoudi S, Keshazare S, Jette D. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Rasouli FS, Masoudi SF. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors. Appl Radiat Isot 2014; 96:45-51. [PMID: 25479433 DOI: 10.1016/j.apradiso.2014.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/21/2014] [Accepted: 11/14/2014] [Indexed: 11/28/2022]
Abstract
High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations.
Collapse
Affiliation(s)
- Fatemeh S Rasouli
- Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416 Tehran, Iran.
| | - S Farhad Masoudi
- Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416 Tehran, Iran
| |
Collapse
|
10
|
BSA optimization and dosimetric assessment for an electron linac based BNCT of deep‐seated brain tumors. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3087-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Investigation on F/M material aspects of IRT-Sofia NCT channel. Appl Radiat Isot 2013; 88:180-4. [PMID: 24359789 DOI: 10.1016/j.apradiso.2013.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 11/23/2022]
Abstract
The filter/moderator area of IRT-Sofia BNCT channel was investigated in this study in order to find a higher radiation resistant material as a suitable substitution for the Teflon(®). Two options - Al2O3 and graphite - were investigated. The results show, that both graphite and the Al2O3 can be successfully used as a filter/moderator material at IRT-Sofia. Initial evaluation of the in-phantom performance of the IRT-Sofia BNCT channel was made and merits similar to the best existing ones were found.
Collapse
|
12
|
Rasouli FS, Masoudi SF. Design and optimization of a beam shaping assembly for BNCT based on D–T neutron generator and dose evaluation using a simulated head phantom. Appl Radiat Isot 2012; 70:2755-62. [DOI: 10.1016/j.apradiso.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
13
|
Rasouli FS, Farhad Masoudi S, Kasesaz Y. Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source. ANN NUCL ENERGY 2012. [DOI: 10.1016/j.anucene.2011.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Burlon A, Girola S, Valda A, Minsky D, Kreiner A, Sánchez G. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA. Appl Radiat Isot 2011; 69:1688-91. [DOI: 10.1016/j.apradiso.2011.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
|
15
|
Binns PJ, Riley KJ, Ostrovsky Y, Gao W, Albritton JR, Kiger WS, Harling OK. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration. Int J Radiat Oncol Biol Phys 2007; 67:1484-91. [PMID: 17394946 DOI: 10.1016/j.ijrobp.2006.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to construct a (6)Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). METHODS AND MATERIALS Design of the (6)Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. RESULTS The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min(-1) for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. CONCLUSIONS Optional (6)Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors.
Collapse
Affiliation(s)
- Peter J Binns
- Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Binns PJ, Riley KJ, Harling OK. Epithermal Neutron Beams for Clinical Studies of Boron Neutron Capture Therapy: A Dosimetric Comparison of Seven Beams. Radiat Res 2005; 164:212-20. [PMID: 16038592 DOI: 10.1667/rr3404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A comparison of seven epithermal neutron beams used in clinical studies of boron neutron capture therapy (BNCT) in Sweden (Studsvik), Finland (Espoo), Czech Republic (ReZ), The Netherlands (Petten) and the U.S. (Brookhaven and Cambridge) was performed to facilitate sharing of preclinical and clinical results. The physical performance of each beam was measured using a common dosimetry method under conditions pertinent to brain irradiations. Neutron fluence and absorbed dose measurements were performed with activation foils and paired ionization chambers on the central axis both in air and in an ellipsoidal water phantom. The overall quality of each beam was assessed by figures of merit determined from the total weighted dose profiles that assumed the presence of boron in tissue. The in-air specific beam contamination from both fast neutrons and gamma rays ranged between 8 and 65 x 10(-11) cGy(w) cm2 for the different beams and the epithermal neutron flux intensities available at the patient position differed by more than a factor of 20 from 0.2-4.3 x 10(9) n cm(-2) s(-1). Percentage depth dose profiles measured in-phantom for the individual photon, thermal and fast-neutron dose components differed only subtly in shape between facilities. Assuming uptake characteristics consistent with the currently used boronated phenylalanine, all the epithermal beams exhibit a useful penetration of 8 cm or greater that is sufficient to irradiate a lesion seated at the brain midline. The performance of the existing facilities will benefit from the introduction of advanced compounds through improved beam penetrability. This could increase by as much as 2 cm for the purest of beams, although the beam intensities generally need to be increased to between 2-5 x 10(9) n cm(-2) s(-1) to maintain manageable irradiation times. These data provide the first consistent measurement of beam performance at the different centers and will enable a preliminary normalization of the calculated patient dosimetry.
Collapse
Affiliation(s)
- P J Binns
- Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
17
|
Coderre JA, Turcotte JC, Riley KJ, Binns PJ, Harling OK, Kiger WS. Boron neutron capture therapy: cellular targeting of high linear energy transfer radiation. Technol Cancer Res Treat 2004; 2:355-75. [PMID: 14529302 DOI: 10.1177/153303460300200502] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the preferential targeting of tumor cells with (10)B and subsequent activation with thermal neutrons to produce a highly localized radiation. In theory, it is possible to selectively irradiate a tumor and the associated infiltrating tumor cells with large single doses of high-LET radiation while sparing the adjacent normal tissues. The mixture of high- and low-LET dose components created in tissue during neutron irradiation complicates the radiobiology of BNCT. Much of the complexity has been unravelled through a combination of preclinical experimentation and clinical dose escalation experience. Over 350 patients have been treated in a number of different facilities worldwide. The accumulated clinical experience has demonstrated that BNCT can be delivered safely but is still defining the limits of normal brain tolerance. Several independent BNCT clinical protocols have demonstrated that BNCT can produce median survivals in patients with glioblastoma that appear to be equivalent to conventional photon therapy. This review describes the individual components and methodologies required for effect BNCT: the boron delivery agents; the analytical techniques; the neutron beams; the dosimetry and radiation biology measurements; and how these components have been integrated into a series of clinical studies. The single greatest weakness of BNCT at the present time is non-uniform delivery of boron into all tumor cells. Future improvements in BNCT effectiveness will come from improved boron delivery agents, improved boron administration protocols, or through combination of BNCT with other modalities.
Collapse
Affiliation(s)
- Jeffrey A Coderre
- Nuclear Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Giusti V, Munck af Rosenschöld PM, Sköld K, Montagnini B, Capala J. Monte Carlo model of the Studsvik BNCT clinical beam: Description and validation. Med Phys 2003; 30:3107-17. [PMID: 14713077 DOI: 10.1118/1.1626120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The neutron beam at the Studsvik facility for boron neutron capture therapy (BNCT) and the validation of the related computational model developed for the MCNP-4B Monte Carlo code are presented. Several measurements performed at the epithermal neutron port used for clinical trials have been made in order to validate the Monte Carlo computational model. The good general agreement between the MCNP calculations and the experimental results has provided an adequate check of the calculation procedure. In particular, at the nominal reactor power of 1 MW, the calculated in-air epithermal neutron flux in the energy interval between 0.4 eV-10 keV is 3.24 x 10(9) n cm(-2) s(-1) (+/- 1.2% 1 std. dev.) while the measured value is 3.30 x 10(9) n cm(-20 s(-1) (+/- 5.0% 1 std. dev.). Furthermore, the calculated in-phantom thermal neutron flux, equal to 6.43 x 10(9) n cm(-2) s(-1) (+/- 1.0% 1 std. dev.), and the corresponding measured value of 6.33 X 10(9) n cm(-2) s(-1) (+/- 5.3% 1 std. dev.) agree within their respective uncertainties. The only statistically significant disagreement is a discrepancy of 39% between the MCNP calculations of the in-air photon kerma and the corresponding experimental value. Despite this, a quite acceptable overall in-phantom beam performance was obtained, with a maximum value of the therapeutic ratio (the ratio between the local tumor dose and the maximum healthy tissue dose) equal to 6.7. The described MCNP model of the Studsvik facility has been deemed adequate to evaluate further improvements in the beam design as well as to plan experimental work.
Collapse
Affiliation(s)
- Valerio Giusti
- Department of Mechanical, Nuclear and Production Engineering, Pisa University, Pisa, Italy.
| | | | | | | | | |
Collapse
|
19
|
Riley KJ, Binns PJ, Harling OK. Performance characteristics of the MIT fission converter based epithermal neutron beam. Phys Med Biol 2003; 48:943-58. [PMID: 12701897 DOI: 10.1088/0031-9155/48/7/310] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.
Collapse
Affiliation(s)
- K J Riley
- Nuclear Reactor Laboratory and Department of Nuclear Engineering, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139. USA.
| | | | | |
Collapse
|
20
|
Kiger WS, Palmer MR, Riley KJ, Zamenhof RG, Busse PM. Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: 10B concentration predictions and dosimetric consequences. J Neurooncol 2003; 62:171-86. [PMID: 12749712 DOI: 10.1007/bf02699943] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A two-compartment open model has been developed for predicting 10B concentrations in blood following intravenous infusion of the L-p-boronophenylalanine-fructose complex in humans and derived from pharmacokinetic studies of 24 patients in Phase I clinical trials of boron neutron capture therapy. The 10B concentration profile in blood exhibits a characteristic rise during the infusion to a peak of approximately 32 microg/g (for infusion of 350 mg/kg over 90 min) followed by a biexponential disposition profile with harmonic mean half-lives of 0.32 +/- 0.08 and 8.2 +/- 2.7 h, most likely due to redistribution and primarily renal elimination, respectively. The mean model rate constants k12, k21, and k10 are (mean +/- SD) 0.0227 +/- 0.0064 min(-1), 0.0099 +/- 0.0027 min(-1), 0.0052 +/- 0.0016 min(-1), respectively, and the central compartment volume of distribution V1 is 0.235 +/- 0.042 L/kg. In anticipation of the initiation of clinical trials using an intense neutron beam with concomitantly short irradiations, the ability of this model to predict, in advance, the average blood 10B concentration during brief irradiations was simulated in a retrospective analysis of the pharmacokinetic data from these patients. The prediction error for blood boron concentration and its effect on simulated dose delivered for each irradiation field are reported for three different prediction strategies. In this simulation, error in delivered dose (or, equivalently, neutron fluence) for a given single irradiation field resulting from error in predicted blood 10B concentration was limited to less than 10%. In practice, lower dose errors can be achieved by delivering each field in two fractions (on two separate days) and by adjusting the second fraction's dose to offset error in the first.
Collapse
Affiliation(s)
- W S Kiger
- Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | |
Collapse
|
21
|
Busse PM, Harling OK, Palmer MR, Kiger WS, Kaplan J, Kaplan I, Chuang CF, Goorley JT, Riley KJ, Newton TH, Santa Cruz GA, Lu XQ, Zamenhof RG. A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J Neurooncol 2003; 62:111-21. [PMID: 12749707 DOI: 10.1007/bf02699938] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phase I trial was designed to evaluate normal tissue tolerance to neutron capture therapy (NCT); tumor response was also followed as a secondary endpoint. Between July 1996 and May 1999, 24 subjects were entered into a phase I trial evaluating cranial NCT in subjects with primary or metastatic brain tumors. Two subjects were excluded due to a decline in their performance status and 22 subjects were irradiated at the MIT Nuclear Reactor Laboratory. The median age was 56 years (range 24-78). All subjects had a pathologically confirmed diagnosis of either glioblastoma (20) or melanoma (2) and a Karnofsky of 70 or higher. Neutron irradiation was delivered with a 15 cm diameter epithermal beam. Treatment plans varied from 1 to 3 fields depending upon the size and location of the tumor. The 10B carrier, L-p-boronophenylalanine-fructose (BPA-f), was infused through a central venous catheter at doses of 250 mg kg(-1) over 1 h (10 subjects), 300 mg kg(-1) over 1.5 h (two subjects), or 350 mg kg(-1) over 1.5-2 h (10 subjects). The pharmacokinetic profile of 10B in blood was very reproducible and permitted a predictive model to be developed. Cranial NCT can be delivered at doses high enough to exhibit a clinical response with an acceptable level of toxicity. Acute toxicity was primarily associated with increased intracranial pressure; late pulmonary effects were seen in two subjects. Factors such as average brain dose, tumor volume, and skin, mucosa, and lung dose may have a greater impact on tolerance than peak dose alone. Two subjects exhibited a complete radiographic response and 13 of 17 evaluable subjects had a measurable reduction in enhanced tumor volume following NCT.
Collapse
Affiliation(s)
- Paul M Busse
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Palmer MR, Goorley JT, Kiger WS, Busse PM, Riley KJ, Harling OK, Zamenhof RG. Treatment planning and dosimetry for the Harvard-MIT Phase I clinical trial of cranial neutron capture therapy. Int J Radiat Oncol Biol Phys 2002; 53:1361-79. [PMID: 12128139 DOI: 10.1016/s0360-3016(02)02862-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE A Phase I trial of cranial neutron capture therapy (NCT) was conducted at Harvard-MIT. The trial was designed to determine maximum tolerated NCT radiation dose to normal brain. METHODS AND MATERIALS Twenty-two patients with brain tumors were treated by infusion of boronophenylalanine-fructose (BPA-f) followed by exposure to epithermal neutrons. The study began with a prescribed biologically weighted dose of 8.8 RBE (relative biologic effectiveness) Gy, escalated in compounding 10% increments, and ended at 14.2 RBE Gy. BPA-f was infused at a dose 250-350 mg/kg body weight. Treatments were planned using MacNCTPlan and MCNP 4B. Irradiations were delivered as one, two, or three fields in one or two fractions. RESULTS Peak biologically weighted normal tissue dose ranged from 8.7 to 16.4 RBE Gy. The average dose to brain ranged from 2.7 to 7.4 RBE Gy. Average tumor dose was estimated to range from 14.5 to 43.9 RBE Gy, with a mean of 25.7 RBE Gy. CONCLUSIONS We have demonstrated that BPA-f-mediated NCT can be precisely planned and delivered in a carefully controlled manner. Subsequent clinical trials of boron neutron capture therapy at Harvard and MIT will be initiated with a new high-intensity, high-quality epithermal neutron beam.
Collapse
Affiliation(s)
- Matthew R Palmer
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kiger WS, Palmer MR, Riley KJ, Zamenhof RG, Busse PM. A pharmacokinetic model for the concentration of 10B in blood after boronophenylalanine-fructose administration in humans. Radiat Res 2001; 155:611-8. [PMID: 11260663 DOI: 10.1667/0033-7587(2001)155[0611:apmftc]2.0.co;2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An open two-compartment model has been developed for predicting (10)B concentrations in blood after intravenous infusion of the l-p-boronophenylalanine-fructose complex (BPA-F) in humans and derived from studies of pharmacokinetics in 24 patients in the Harvard-MIT Phase I clinical trials of BNCT. The (10)B concentration profile in blood exhibits a characteristic rise during the infusion to a peak of approximately 32 microg/g (for infusion of 350 mg/kg over 90 min) followed by a biphasic exponential clearance profile with half-lives of 0.34 +/- 0.12 and 9.0 +/- 2.7 h, due to redistribution and primarily renal elimination, respectively. The model rate constants k(1), k(2) and k(3) are 0.0227 +/- 0.0064, 0.0099 +/- 0.0027 and 0.0052 +/- 0.0016 min(-1), respectively, and the central compartment volume of distribution, V(1), is 0.235 +/- 0.042 kg/kg. The validity of this model was demonstrated by successfully predicting the average pharmacokinetic response for a cohort of patients who were administered BPA-F using an infusion schedule different from those used to derive the parameters of the model. Furthermore, the mean parameters of the model do not differ for cohorts of patients infused using different schedules.
Collapse
Affiliation(s)
- W S Kiger
- Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|