1
|
Chen Y, Hao Y, Chen J, Han Q, Wang Z, Peng X, Cheng L. Lacticaseibacillus rhamnosus inhibits the development of dental caries in rat caries model and in vitro. J Dent 2024; 149:105278. [PMID: 39111536 DOI: 10.1016/j.jdent.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Dental caries result from a microbial imbalance in the oral cavity. Probiotics ecologically modulate the oral microflora to prevent caries. This study evaluated the anti-cariogenic effects of two Lacticaseibacillus rhamnosus strains in vitro and in vivo to provide a more theoretical basis for its clinical applications in caries prevention. METHODS In the study, cariogenic biofilms were grown with L. rhamnosus (LGG) or L. rhamnosus ATCC 7469 and analyzed. Quantitative real-time PCR (qPCR), Scanning Electron Microscope (SEM), and Confocal laser scanning microscope (CLSM) were used to detect the changes in the composition and architectures; cariogenic activity was measured by the lactic acid production and Transverse Microradiography (TMR). The effects of LGG on the 12 Sprague-Dawley rat caries model were assessed using Keyes scores and micro-CT analysis. Oral microbiome changes were evaluated through 16S rRNA gene high-throughput sequencing. RESULTS L. rhamnosus can reduce cariogenic bacteria in biofilm by 14.7 % to 48.9 %, with LGG exhibiting more potent inhibitory effects. Both strains of L. rhamnosus can adhere to the surface of biofilms, reduce the extracellular polysaccharides (EPS) matrix, and loosen the biofilm structure. L. rhamnosus inhibited cariogenic activity by reducing the lactic acid production in biofilms. The bovine enamel blocks presented lower mineral loss values and lesion depth values in the group Core+L.rh and Core+LGG. LGG-ingested rats had significantly lower levels of moderate dentin lesions and higher mineral density than the control group. The 16 s rRNA gene sequencing revealed that LGG regulated the beta diversity of the oral microbial community in the rat dental caries model. CONCLUSIONS This study revealed the promising potential of L. rhamnosus, especially the LGG strain, in the ecological prevention of dental caries. CLINICAL SIGNIFICANCE Probiotics may provide a strategy for preventing caries by regulating the oral microecological balance. The study revealed the promising anti-caries potential of the LGG probiotic strain in vivo and in vitro. It is expected that LGG could be used as an oral probiotic for the clinical prevention and treatment of caries.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Doost A, Arnolda L. Iodine staining outperforms phosphotungstic acid in high-resolution micro-CT scanning of post-natal mice cardiac structures. J Med Imaging (Bellingham) 2021; 8:027001. [PMID: 33778096 DOI: 10.1117/1.jmi.8.2.027001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose: Micro-computed tomography (micro-CT) scan provides high-resolution three-dimensional images of mineralized tissues in small animal models. Contrast enhancement is essential to visualize non-mineralized tissues with micro-CT scan. We attempted to compare the two most common contrast agents to stain and image mouse cardiac structures. Approach: Ex-vivo micro-CT scan images of the mouse hearts were obtained following staining by potassium iodide or phosphotungstic acid (PTA). PTA-stained samples were imaged after various durations following staining (14 days, 25 days, 187 days, and 780 days), whereas iodine-stained samples were imaged after 72 hours. We compared median staining intensity between PTA and iodine at 0.1-mm intervals from the edge using the Mann Whitney test with correction for multiple comparisons. Results: Sixty post-natal mice hearts were stained with either PTA or iodine and imaged using micro-CT scan. Iodine proved to be faster and more uniform in complete enhancement of cardiac tissue in as short as 72 h, whereas PTA required a significantly longer time period to penetrate mouse cardiac structure ( > 150 days ). Median staining intensity with iodine was strongly higher than that with PTA from 0.1- to 1.5-mm distance from the epicardial edge (2-tailed P value < 0.01 or lower throughout). Conclusions: Iodine-stained soft tissue imaging by micro-CT scan provides a non-destructive, efficient, and accurate visualization tool for anatomical analysis of animal heart models of human cardiovascular conditions. Iodine is more efficient compared to PTA to achieve complete murine myocardial staining in a significantly shorter time period.
Collapse
Affiliation(s)
- Ata Doost
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia.,Fiona Stanley Hospital, Cardiology Department, Murdoch, Western Australia, Australia
| | - Leonard Arnolda
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia.,University of Wollongong, Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Inhibitory Effect of Lactobacillus plantarum CCFM8724 towards Streptococcus mutans- and Candida albicans-Induced Caries in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4345804. [PMID: 33414892 PMCID: PMC7769668 DOI: 10.1155/2020/4345804] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus mutans is a recognized cariogenic bacterium and a major producer of biofilm matrix. The presence of Candida albicans in dental plaque with S. mutans enhances the virulence leading to the onset of rampant caries which is similar to early childhood caries (ECC). The purpose of this study was to explore the effect of Lactobacillus plantarum CCFM8724 (CCFM8724) on the treatment and prevention of dental caries induced by S. mutans and C. albicans in vivo. Rats were divided into 6 groups: the control group and model group, 2 treatment groups, and 2 prevention groups (0.02% chlorhexidine or CCFM8724). The fluctuation of microbial colonization and the change of bacteria flora in rat oral cavity after sowing of L. plantarum CCFM8724 were investigated by colony-forming units (CFU) and microflora analysis. The caries of rats were assessed by microcomputed tomography (micro-CT) and Keyes scoring method. The results showed that L. plantarum CCFM8724 in both the treatment and prevention groups could significantly decrease the population of S. mutans and C. albicans in the rats' oral cavity (p < 0.001), the mineral loss of enamel (p < 0.05), and the scores of caries (p < 0.05). Besides, L. plantarum CCFM8724 exhibited better effects than chlorhexidine. Hence, L. plantarum CCFM8724 was proved to be a potential oral probiotic on caries treatment and prevention in vivo and it may have the prospect of application in dental caries (especially ECC) prevention products.
Collapse
|
4
|
Mechanical Properties of CoCr Dental-Prosthesis Restorations Made by Three Manufacturing Processes. Influence of the Microstructure and Topography. METALS 2020. [DOI: 10.3390/met10060788] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of this study is to compare the mechanical properties of three different dental restorations’ manufacturing processes (CADCAM milling, casting and laser sintering) generated by only one laboratory scanner focusing on marginal fit analysis and their mechanical properties. A chrome-cobalt (Cr-Co) alloy from the same batch was used for three different methods to make an implant abutment. This simulates a maxillary right first molar that was fixed in a hemi-maxillary stone model. Five scans were performed by each tested framework. Nine frameworks were manufactured for each manufacture procedure. Field-Emission Scanning Electron Microscope (FE-SEM) direct vision was used to marginal gap measurement in five critical points for each specimen. In order to fix the samples in the microscope chamber, the restorations were submitted at a compression load of 50 N. The samples always have the same orientation and conditions. The resolution of the microscope is 4 nm and it is equipped by J image software. The microstructure of the samples was also determined with the FE-SEM equipped with EDS-microanalysis. Roughness parameters were measured using White Light Interferometry (WLI). The arithmetical mean for the Ra and Rq of each sample was calculated. The samples were mechanically characterized by means of microhardness and flexural testing. Servo-hydraulic testing machine was used with cross-head rate of 1 mm/min. Two-way ANOVA statistical analysis was performed to determine whether the marginal discrepancies and mechanical properties were significantly different between each group (significance level p < 0.05). The overall mean marginal gap values were: from 50.53 ± 10.30 µm for the samples produced by CADCAM to 85.76 ± 22.56 µm for the samples produced by the casting method. Laser sintering presents a marginal gap of 60.95 ± 20.66 µm. The results revealed a statistically significant difference (p-value < 0.005) in the mean marginal gap between the CADCAM systems studied. The higher flexure load to fracture for these restorations were for CADCAM restoration and the lower was for the casting samples. For these restorations, CADCAM Restoration yielded a higher flexure load to fracture and Casting ones yielded the lower. Porosity and microstructure play a very important role in the mechanical properties.
Collapse
|
5
|
Zheng W, Ding L, Wang Y, Han S, Zheng S, Guo Q, Li W, Zhou X, Zhang L. The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J Appl Biomater Funct Mater 2019; 17:2280800019827798. [PMID: 30808229 DOI: 10.1177/2280800019827798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nowadays, dental caries is one of the most common oral health problems, affecting most individuals. It has been found that, by remineralizing enamel at an early stage in the formation of enamel caries, teeth can be effectively protected from dental caries. In this work, a peptide with eight repetitive sequences of aspartate-serine-serine (8DSS) is applied as the bio-mineralizer in an in-vivo rat enamel caries model. Nondestructive quantitative light-induced fluorescence-digital (QLF-D) imaging and micro-computed tomography (micro-CT) are used to evaluate the remineralization of enamel carious lesions by measuring the total fluorescence radiance loss of the molar area (Δ QTotal), acquired using QLF-D imaging, and the mineral density and residual molar enamel volume, acquired using micro-CT. Correlations are explored between Δ QTotal and mineral density (strong correlation, r = 0.8000, p < 0.001) and Δ QTotal and residual molar enamel volume (moderate correlation, r = 0.6375, p < 0.001). Our results demonstrate that 8DSS is a promising in-vivo remineralization agent that exhibits comparable effects to NaF ( p < 0.05), which has been verified using the classical Keyes method. Moreover, the nondestructive QLF-D and micro-CT methods can be combined to quantify the remineralization of enamel carious lesions three-dimensionally in vivo, making them broadly applicable in quantifying hard tissues.
Collapse
Affiliation(s)
- Wenyue Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sainan Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mondal A, Nguyen C, Ma X, Elbanna AE, Carlson JM. Network models for characterization of trabecular bone. Phys Rev E 2019; 99:042406. [PMID: 31108725 DOI: 10.1103/physreve.99.042406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own, while structural features in conjunction with BMD can explain more of the variation in trabecular bone strength. We develop a network-based model of trabecular bone by creating graphs from micro-computed tomography images of human bone, with weighted links representing trabeculae and nodes representing branch points. These graphs enable calculation of quantitative network metrics to characterize trabecular structure. We also create finite element models of the networks in which each link is represented by a beam, facilitating analysis of the mechanical response of the bone samples to simulated loading. We examine the structural and mechanical properties of trabecular bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant correlations between the stiffness of VOIs and 10 different structural metrics. Individually, the volume fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear regression to identify the smallest subset of variables needed to capture the variation in stiffness. In a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation, trabecular spacing, link length, and the number of links are the structural metrics that are most significant (p<0.05) in capturing the variation of stiffness in trabecular networks.
Collapse
Affiliation(s)
- Avik Mondal
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Chu J, Feng X, Guo H, Zhang T, Zhao H, Zhang Q. Remineralization Efficacy of an Amelogenin-Based Synthetic Peptide on Carious Lesions. Front Physiol 2018; 9:842. [PMID: 30026702 PMCID: PMC6041723 DOI: 10.3389/fphys.2018.00842] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to evaluate the remineralization efficacy of an amelogenin-based peptide on initial enamel carious lesions in vitro. Furthermore, we attempted to provide insights into the possible mechanism of the remineralization, including determining the calcium-binding properties of the peptide and its effects on calcium phosphate mineralization. Methods: The peptide comprising the N-terminus and the C-terminus of porcine amelogenin was synthesized by Synpeptide Co., Ltd. Fifty specimens were randomly assigned to five immersing treatment groups for 12 days: remineralizing medium only; 12.5 μg/mL peptide + remineralizing medium; 25 μg/mL peptide + remineralizing medium; 50 μg/mL peptide + remineralizing medium; fluoride + remineralizing medium. After immersion, mean mineral loss before and after remineralization of each specimen was determined using micro-CT. Mean mineral gain after remineralization was calculated. Calcium binding properties were measured by Isothermal titration calorimetry (ITC). TEM and Fourier transform-infrared were used to determine the effects of the peptide on calcium phosphate mineralization. Results: A significant decrease in mineral loss after remineralization process in all groups was observed (p < 0.05). Treatment in remineralizing medium resulted in the lowest mineral gain while the fluoridated treatment exhibited the highest mineral gain among all groups. Inclusion of synthetic peptide in the remineralizing medium exhibited a higher mineral gain and the gain of 50 μg/mL group was greater than that of the 25 μg/mL group. No significant difference in mineral gain was observed between the remineralizing medium only group and the 12.5 μg/mL peptide group (p > 0.05). ITC values showed that the Ca2+-binding affinity of the peptide is about 9.914 × 104M−1. Furthermore, the peptide was found to inhibit calcium phosphate precipitation and stabilize amorphous calcium phosphate formation for more than 2 h and finally transform into ordered hydroxyapatite crystals. Conclusion: Specific concentrations of the amelogenin-based synthetic peptide promoted in vitro remineralization, with higher concentrations exhibiting significantly greater remineralization. This study presented evidence suggesting that the peptide may act as a Ca2+carrier as well as a regulating factor. When the stabilizing calcium and phosphorus ions bind with the peptide they become biologically available for the remineralization of deeper carious lesions, while also regulated by the peptide to transform into ordered hydroxyapatite crystals.
Collapse
Affiliation(s)
- Jinpu Chu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofang Feng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Huijing Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tieting Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualei Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Qun Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Leszczyński B, Śniegocka M, Wróbel A, Pędrys R, Szczygieł M, Romanowska-Dixon B, Urbańska K, Elas M. Visualization and Quantitative 3D Analysis of Intraocular Melanoma and Its Vascularization in a Hamster Eye. Int J Mol Sci 2018; 19:ijms19020332. [PMID: 29364141 PMCID: PMC5855554 DOI: 10.3390/ijms19020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
A tumor vasculature network undergoes intense growth and rebuilding during tumor growth. Traditionally, vascular networks are histologically examined using parameters such as vessel density determined from two-dimensional slices of the tumor. Two-dimensional probing of a complicated three-dimensional (3D) structure only provides partial information. Therefore, we propose the use of microcomputed tomography (micro-CT) imaging to analyze the evolution of a tumor vasculature in an experimental ocular tumor model. A Bomirski Hamster Melanoma was implanted in the anterior chamber of a hamster eye. Ultrasound (US) imaging of the same tumor was performed in vivo, and the vascular results obtained using the two methods were compared. Normal ocular tissues, a tumor, and a tumor vascular structure were revealed with high accuracy using micro-CT. The vessels that grew within the tumor were chaotic, leaky, and contained many convoluted micro-vessels and embolizations. They comprised 20–38% of the tumor mass. The blood flow in the larger functional vessels was in the range from 10 to 25 mm/s, as determined by in vivo Doppler US. The micro-CT imaging of the hamster eyeball enabled both qualitative and quantitative 3D analyses of the globe at a histological level. Although the presented images were obtained ex vivo, micro-CT noninvasive imaging is being developed intensively, and high-resolution in vivo imaging is feasible.
Collapse
Affiliation(s)
- Bartosz Leszczyński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, 30-348 Krakow, Poland.
| | - Martyna Śniegocka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland.
| | - Andrzej Wróbel
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, 30-348 Krakow, Poland.
| | - Roman Pędrys
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, 30-348 Krakow, Poland.
| | - Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland.
| | - Bożena Romanowska-Dixon
- Ophthalmology and Ocular Oncology Clinic, University Hospital, Kopernika 38 Street, 31-501 Krakow, Poland.
| | - Krystyna Urbańska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland.
| | - Martyna Elas
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, 30-348 Krakow, Poland.
| |
Collapse
|
9
|
Leung C, Duclos KK, Grünbaum T, Cloutier R, Angers B. Asymmetry in dentition and shape of pharyngeal arches in the clonal fish Chrosomus eos-neogaeus: Phenotypic plasticity and developmental instability. PLoS One 2017; 12:e0174235. [PMID: 28380079 PMCID: PMC5381790 DOI: 10.1371/journal.pone.0174235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
The effect of the environment may result in different developmental outcomes. Extrinsic signals can modify developmental pathways and result in alternative phenotypes (phenotypic plasticity). The environment can also be interpreted as a stressor and increase developmental instability (developmental noise). Directional and fluctuating asymmetry provide a conceptual background to discriminate between these results. This study aims at assessing whether variation in dentition and shape of pharyngeal arches of the clonal fish Chrosomus eos-neogaeus results from developmental instability or environmentally induced changes. A total of 262 specimens of the Chrosomus eos-neogaeus complex from 12 natural sites were analysed. X-ray microcomputed tomography (X-ray micro-CT) was used to visualize the pharyngeal arches in situ with high resolution. Variation in the number of pharyngeal teeth is high in hybrids in contrast to the relative stability observed in both parental species. The basal dental formula is symmetric while the most frequent alternative dental formula is asymmetric. Within one lineage, large variation in the proportion of individuals bearing basal or alternative dental formulae was observed among sites in the absence of genetic difference. Both dentition and arch shape of this hybrid lineage were explained significantly by environmental differences. Only individuals bearing asymmetric dental formula displayed fluctuating asymmetry as well as directional left-right asymmetry for the arches. The hybrids appeared sensitive to environmental signals and intraspecific variation on pharyngeal teeth was not random but reflects phenotypic plasticity. Altogether, these results support the influence of the environment as a trigger for an alternative developmental pathway resulting in left-right asymmetry in dentition and shape of pharyngeal arches.
Collapse
Affiliation(s)
- Christelle Leung
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Kevin Karl Duclos
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Grünbaum
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Complex Odontoma: A Case Report with Micro-Computed Tomography Findings. Case Rep Dent 2016; 2016:3584751. [PMID: 27293913 PMCID: PMC4886105 DOI: 10.1155/2016/3584751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
Odontomas are the most common benign tumors of odontogenic origin. They are normally diagnosed on routine radiographs, due to the absence of symptoms. Histopathologic evaluation confirms the diagnosis especially in cases of complex odontoma, which may be confused during radiographic examination with an osteoma or other highly calcified bone lesions. The micro-CT is a new technology that enables three-dimensional analysis with better spatial resolution compared with cone beam computed tomography. Another great advantage of this technology is that the sample does not need special preparation or destruction in the sectioned area as in histopathologic evaluation. An odontoma with CBCT and microtomography images is presented in a 26-year-old man. It was first observed on panoramic radiographs and then by CBCT. The lesion and the impacted third molar were surgically excised using a modified Neumann approach. After removal, it was evaluated by histopathology and microtomography to confirm the diagnostic hypothesis. According to the results, micro-CT enabled the assessment of the sample similar to histopathology, without destruction of the sample. With further development, micro-CT could be a powerful diagnostic tool in future research.
Collapse
|
11
|
Barbosa GLDR, Pimenta LA, Almeida SMD. Micro-CT evaluation of the radioprotective effect of resveratrol on the mandibular incisors of irradiated rats. Braz Oral Res 2016; 30:S1806-83242016000100229. [PMID: 26981750 DOI: 10.1590/1807-3107bor-2016.vol30.0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to perform a microcomputed tomographic evaluation of the radioprotective effect of resveratrol on the volume of mandibular incisors of irradiated rats. A second aim was to make a quantitative assessment of the effect of x-ray exposure on these dental tissues. Twenty adult male rats were divided into four groups: control, irradiated control, resveratrol, and irradiated resveratrol. The resveratrol groups received 100 mg/kg of resveratrol, whereas the irradiated groups were exposed to 15 Gy of irradiation. The animals were sacrificed 30 days after the irradiation procedure, and their mandibles were removed and scanned in a microcomputed tomography unit. The images were loaded into Mimics software to allow segmentation of the mandibular incisor and assessment of its volume. The results were compared by One-way ANOVA and Tukey's post hoc test, considering a 5% significance level. The irradiated groups showed significantly diminished volumes of the evaluated teeth, as compared with the control group (p < 0.05). The resveratrol group presented higher values than those of the irradiated groups, and volumes similar to those of the control group. High radiation doses significantly affected tooth formation, resulting in alterations in the dental structure, and thus lower volumes. Moreover, resveratrol showed no effective radioprotective impact on dental tissues. Future studies are needed to evaluate different concentrations of this substance, in an endeavor to verify its potential as a radioprotector for these dental tissues.
Collapse
Affiliation(s)
| | - Luiz André Pimenta
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Solange Maria de Almeida
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| |
Collapse
|