1
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Aboulbanine Z, Bahhous K. Elaboration and experimental validation of a Monte Carlo source model for linac 6 MV photon beams with and without Flattening Filter. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Castle JR, Duan J, Feng X, Chen Q. Development of a virtual source model for Monte Carlo-based independent dose calculation for varian linac. J Appl Clin Med Phys 2022; 23:e13556. [PMID: 35138686 PMCID: PMC9121055 DOI: 10.1002/acm2.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Monte Carlo (MC) independent dose calculations are often based on phase-space files (PSF), as they can accurately represent particle characteristics. PSF generally are large and create a bottleneck in computation time. In addition, the number of independent particles is limited by the PSF, preventing further reduction of statistical uncertainty. The purpose of this study is to develop and validate a virtual source model (VSM) to address these limitations. Particles from existing PSF for the Varian TrueBeam medical linear accelerator 6X, 6XFFF, 10X, and 10XFFF beam configurations were tallied, analyzed, and used to generate a dual-source photon VSM that includes electron contamination. The particle density distribution, kinetic energy spectrum, particle direction, and the correlations between characteristics were computed. The VSM models for each beam configuration were validated with water phantom measurements as well as clinical test cases against the original PSF. The new VSM requires 67 MB of disk space for each beam configuration, compared to 50 GB for the PSF from which they are based and effectively remove the bottleneck set by the PSF. At 3% MC uncertainty, the VSM approach reduces the calculation time by a factor of 14 on our server. MC doses obtained using the VSM approach were compared against PSF-generated doses in clinical test cases and measurements in a water phantom using a gamma index analysis. For all tests, the VSMs were in excellent agreement with PSF doses and measurements (>90% passing voxels between doses and measurements). Results of this study indicate the successful derivation and implementation of a VSM model for Varian Linac that significantly saves computation time without sacrificing accuracy for independent dose calculation.
Collapse
Affiliation(s)
| | - Jingwei Duan
- Department of Radiation Medicine, University of Kentucky School of Medicine, Lexington, Kentucky, USA
| | - Xue Feng
- Carina Medical LLC, Lexington, Kentucky, USA
| | - Quan Chen
- Department of Radiation Medicine, University of Kentucky School of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Santos T, Ventura T, Mateus J, Capela M, Lopes MDC. On the complexity of helical tomotherapy treatment plans. J Appl Clin Med Phys 2020; 21:107-118. [PMID: 32363800 PMCID: PMC7386195 DOI: 10.1002/acm2.12895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Multiple metrics are proposed to characterize and compare the complexity of helical tomotherapy (HT) plans created for different treatment sites. METHODS A cohort composed of 208 HT plans from head and neck (105), prostate (51) and brain (52) tumor sites was considered. For each plan, 14 complexity metrics were calculated. Those metrics evaluate the percentage of leaves with small opening times or approaching the projection duration, the percentage of closed leaves, the amount of tongue-and-groove effect, and the overall modulation of the planned sinogram. To enable data visualization, an approach based on principal component analysis was followed to reduce the dataset dimensionality. This allowed the calculation of a global plan complexity score. The correlation between plan complexity and pretreatment verification results using the Spearman's rank correlation coefficients was investigated. RESULTS According to the global score, the most complex plans were the head and neck tumor cases, followed by the prostate and brain lesions irradiated with stereotactic technique. For almost all individual metrics, head and neck plans confirmed to be the plans with the highest complexity. Nevertheless, prostate cases had the highest percentage of leaves with an opening time approaching the projection duration, whereas the stereotactic brain plans had the highest percentage of closed leaves per projection. Significant correlations between some of the metrics and the pretreatment verification results were identified for the stereotactic brain group. CONCLUSIONS The proposed metrics and the global score demonstrated to be useful to characterize and quantify the complexity of HT plans of different treatment sites. The reported differences inter- and intra-group may be valuable to guide the planning process aiming at reducing uncertainties and harmonize planning strategies.
Collapse
Affiliation(s)
- Tania Santos
- Physics Department, University of Coimbra, Coimbra, Portugal.,Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Tiago Ventura
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Josefina Mateus
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Miguel Capela
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | | |
Collapse
|
5
|
Yuan J, Mansur D, Yao M, Biswas T, Zheng Y, Jesseph R, Jin JY, Machtay M. An Integrated Framework Based on Full Monte Carlo Simulations for Double-Scattering Proton Therapy. Int J Part Ther 2020; 6:31-41. [PMID: 31998819 DOI: 10.14338/ijpt-19-00063.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We developed an integrated framework that employs a full Monte Carlo (MC) model for treatment-plan simulations of a passive double-scattering proton system. MATERIALS AND METHODS We have previously validated a virtual machine source model for full MC proton-dose calculations by comparing the percentage of depth-dose curves, spread-out Bragg peaks, and lateral profiles against measured commissioning data. This study further expanded our previous work by developing an integrate framework that facilitates its clinical use. Specifically, we have (1) constructed patient-specific applicator and compensator numerically from the plan data and incorporated them into the beamline, (2) created the patient anatomy from the computed tomography image and established the transformation between patient and machine coordinate systems, and (3) developed a graphical user interface to ease the whole process from importing the treatment plan in the Digital Imaging and Communications in Medicine format to parallelization of the MC calculations. End-to-end tests were performed to validate the functionality, and 3 clinical cases were used to demonstrate clinical utility of the framework. RESULTS The end-to-end tests demonstrated that the framework functioned correctly for all tested functionality. Comparisons between the treatment planning system calculations and MC results in 3 clinical cases revealed large dose difference up to 17%, especially in the beam penumbra and near the end of beam range. The discrepancy likely originates from a variety of sources, such as the dose algorithms, modeling of the beamline, and the dose metric. The agreement for other regions was acceptable. CONCLUSION An integrated framework was developed for full MC simulations of double-scattering proton therapy. It can be a valuable tool for dose verification and plan evaluation.
Collapse
Affiliation(s)
- Jiankui Yuan
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - David Mansur
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Min Yao
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Yiran Zheng
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Rick Jesseph
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Jian-Yue Jin
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
6
|
Aboulbanine Z, Khayati NE. A theoretical multileaf collimator model for fast Monte Carlo dose calculation of linac 6/10 MV photon beams. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Yuan J, Ellis R, Machtay M. Technical Note: An approach to building a Monte Carlo simulation model for a double scattering proton beam system. Med Phys 2018; 45:2660-2666. [PMID: 29603753 DOI: 10.1002/mp.12895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The purpose of this study was to demonstrate and develop a Monte Carlo (MC) simulation model for a passive double scattering compact proton therapy system based on limited information of the mechanical components. METHOD We built a virtual machine source model (VMSM) which included a detailed definition of each beam-modifying component in the nozzle. Conceptually, it is similar to the conventional virtual analytical source model (VASM), except that the numerical machine nozzle or beamline is constructed in the VMSM, whereas in the VASM analytical parameters characterizing the energy spectrum and source fluence distribution are sought. All major beam shaping components were included in the VMSM and the model simulates interactions of the beam with a rotating range modulation wheel (RMW) combined with the beam current modulation. The RMWs, the first and second scatterer in the system were generated and tuned to reproduce measurement data as closely as possible. To validate the model, we compared the percent depth dose curves, spread out Bragg peaks (SOBPs) and lateral profiles against measured commissioning beam data. RESULTS The agreement of beam range between the MC calculation and measurement was within 1 mm for all beam options. The distal-falloff length was in good agreement as well (<1 mm for the large and deep groups, <1.5 mm for the small group). Agreement to within 2.5 mm of measured SOBP widths was obtained for all MC calculations. For lateral profiles, differences were found to be less than 2 mm. CONCLUSIONS We demonstrated that with limited geometrical information it is possible to build an acceptable source model for MC simulations of a passive double scattering compact proton therapy system. The agreement between the measurements and the MC model provides validation for use of the model for further studies of the dosimetric effects in patient treatments.
Collapse
Affiliation(s)
- Jiankui Yuan
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Rodney Ellis
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, University Hospitals, Cleveland Medical Center, Cleveland, 44106, OH, USA
| |
Collapse
|
8
|
Yuan J, Machtay M. A Monte Carlo model and its commissioning for the Leksell Gamma Knife Perfexion radiosurgery system. Med Phys 2017; 44:4910-4918. [PMID: 28599073 DOI: 10.1002/mp.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop and commission a Monte Carlo (MC) simulation model for the Leksell Gamma Knife (LGK) Perfexion (PFX) radiosurgery system. METHOD We previously established a source model for MC simulations of the LGK PFX for the purpose of the treatment planning system (TPS) dose verification and plan evaluation. To make practical and effective use of the model in clinic, several issues need to be addressed. First, thorough commissioning procedures are needed to ensure the validity of the model parameters, such as the source-to-focus (STF) distance, the source solid angle. Second, an efficient source particle sampling method is required to facilitate dose calculations for multitarget and multishot configurations in patient treatment plans. Third, inseparably, it is interesting to know the dose difference between the two GK TPS algorithms (TMR and convolution) and the MC method in extreme heterogeneous cases resulting from the inhomogeneous effect. We report our recent development in addressing these issues. Phantoms with the frame fiducials were manually created in the format of DICOM CT image to eliminate the uncertainties associated with scanner artifacts and image registration. The created homogeneous phantom was used to calibrate the model parameters to match the output factors with the manufacturer provided data, and the heterogeneous phantom with multilayer materials was used to study the inhomogeneous effect. RESULTS The agreement between the MC calculation and TPS was very good for the homogeneous spherical phantom. The difference of the full width at half maximum (FWHM) of the profiles was less than 1 mm except for the profile for 16 mm collimator along z-axis (less than 2 mm). For the extreme heterogeneous test case, it was shown that the TMR algorithm can overestimate the target dose by up to 22% using the measure of dose volume parameter D95. The agreement between the MC method and the TPS convolution method was better (within 3.6%) for the target near the center of phantom, however, discrepancy (up to 10.7%) existed for the target close to the skull. The difference between the two TPS dose algorithms was about 11%. CONCLUSIONS Considerable dose difference may result from the effect of heterogeneity, such as in the regions of the air cavities and bones. As the MC method has been extensively used in conventional external beams, it is worthwhile for further investigation in applying the MC method to accurate dose planning in the new GK PFX radiosurgery platform.
Collapse
Affiliation(s)
- Jiankui Yuan
- Cleveland Medical Center, University Hospitals, Cleveland, OH, 44106, USA
| | - Mitchell Machtay
- Cleveland Medical Center, University Hospitals, Cleveland, OH, 44106, USA
| |
Collapse
|
9
|
Ming X, Feng Y, Liu R, Yang C, Zhou L, Zhai H, Deng J. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans. Phys Med Biol 2017; 62:1759-1776. [PMID: 28079526 DOI: 10.1088/1361-6560/aa5911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
Collapse
Affiliation(s)
- Xin Ming
- Department of Biomedical Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Yuan J, Zheng Y, Wessels B, Lo SS, Ellis R, Machtay M, Yao M. Experimental Validation of Monte Carlo Simulations Based on a Virtual Source Model for TomoTherapy in a RANDO Phantom. Technol Cancer Res Treat 2016; 15:796-804. [DOI: 10.1177/1533034615605007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022] Open
Abstract
A virtual source model for Monte Carlo simulations of helical TomoTherapy has been developed previously by the authors. The purpose of this work is to perform experiments in an anthropomorphic (RANDO) phantom with the same order of complexity as in clinical treatments to validate the virtual source model to be used for quality assurance secondary check on TomoTherapy patient planning dose. Helical TomoTherapy involves complex delivery pattern with irregular beam apertures and couch movement during irradiation. Monte Carlo simulation, as the most accurate dose algorithm, is desirable in radiation dosimetry. Current Monte Carlo simulations for helical TomoTherapy adopt the full Monte Carlo model, which includes detailed modeling of individual machine component, and thus, large phase space files are required at different scoring planes. As an alternative approach, we developed a virtual source model without using the large phase space files for the patient dose calculations previously. In this work, we apply the simulation system to recompute the patient doses, which were generated by the treatment planning system in an anthropomorphic phantom to mimic the real patient treatments. We performed thermoluminescence dosimeter point dose and film measurements to compare with Monte Carlo results. Thermoluminescence dosimeter measurements show that the relative difference in both Monte Carlo and treatment planning system is within 3%, with the largest difference less than 5% for both the test plans. The film measurements demonstrated 85.7% and 98.4% passing rate using the 3 mm/3% acceptance criterion for the head and neck and lung cases, respectively. Over 95% passing rate is achieved if 4 mm/4% criterion is applied. For the dose–volume histograms, very good agreement is obtained between the Monte Carlo and treatment planning system method for both cases. The experimental results demonstrate that the virtual source model Monte Carlo system can be a viable option for the accurate dose calculation of helical TomoTherapy.
Collapse
Affiliation(s)
- Jiankui Yuan
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Yiran Zheng
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Barry Wessels
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Simon S. Lo
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Rodney Ellis
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | | | - Min Yao
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
11
|
Yuan J, Lo SS, Zheng Y, Sohn JW, Sloan AE, Ellis R, Machtay M, Wessels B. Development of a Monte Carlo model for treatment planning dose verification of the Leksell Gamma Knife Perfexion radiosurgery system. J Appl Clin Med Phys 2016; 17:190-201. [PMID: 27455497 PMCID: PMC5690038 DOI: 10.1120/jacmp.v17i4.6196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/15/2016] [Accepted: 03/02/2016] [Indexed: 11/23/2022] Open
Abstract
Detailed Monte Carlo (MC) modeling of the Leksell Gamma Knife (GK) Perfexion (PFX) collimator system is the only accurate ab initio approach appearing in the literature. As a different approach, in this work, we present a MC model based on film measurement. By adjusting the model parameters and fine-tuning the derived fluence map for each individual source to match the manufacturer's ring output factors, we created a reasonable virtual source model for MC simulations to verify treatment planning dose for the GK PFX radiosurgery system. The MC simulation model was commissioned by simple single shots. Dose profiles and both ring and collimator output factors were compared with the treatment planning system (TPS). Good agreement was achieved for dose profiles especially for the region of plateau (< 2%), while larger difference (< 5%) came from the penumbra region. The maximum difference of the calculated output factor was within 0.7%. The model was further validated by a clinical test case. Good agreement was obtained. The DVHs for brainstem and the skull were almost identical and, for the target, the volume covered by the prescription (12.5 Gy to 50% isodose line) was 95.6% from MC calculation versus 100% from the TPS.
Collapse
|