1
|
Qubala A, Shafee J, Batista V, Liermann J, Winter M, Piro D, Jäkel O. Comparative evaluation of a surface-based respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms. J Appl Clin Med Phys 2024; 25:e14174. [PMID: 37815197 PMCID: PMC10860430 DOI: 10.1002/acm2.14174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Four-dimensional computed tomography (4DCT), which relies on breathing-induced motion, requires realistic surrogate information of breathing variations to reconstruct the tumor trajectory and motion variability of normal tissues accurately. Therefore, the SimRT surface-guided respiratory monitoring system has been installed on a Siemens CT scanner. This work evaluated the temporal and spatial accuracy of SimRT versus our commonly used pressure sensor, AZ-733 V. A dynamic thorax phantom was used to reproduce regular and irregular breathing patterns acquired by SimRT and Anzai. Various parameters of the recorded breathing patterns, including mean absolute deviations (MAD), Pearson correlations (PC), and tagging precision, were investigated and compared to ground-truth. Furthermore, 4DCT reconstructions were analyzed to assess the volume discrepancy, shape deformation and tumor trajectory. Compared to the ground-truth, SimRT more precisely reproduced the breathing patterns with a MAD range of 0.37 ± 0.27 and 0.92 ± 1.02 mm versus Anzai with 1.75 ± 1.54 and 5.85 ± 3.61 mm for regular and irregular breathing patterns, respectively. Additionally, SimRT provided a more robust PC of 0.994 ± 0.009 and 0.936 ± 0.062 for all investigated breathing patterns. Further, the peak and valley recognition were found to be more accurate and stable using SimRT. The comparison of tumor trajectories revealed discrepancies up to 7.2 and 2.3 mm for Anzai and SimRT, respectively. Moreover, volume discrepancies up to 1.71 ± 1.62% and 1.24 ± 2.02% were found for both Anzai and SimRT, respectively. SimRT was validated across various breathing patterns and showed a more precise and stable breathing tracking, (i) independent of the amplitude and period, (ii) and without placing any physical devices on the patient's body. These findings resulted in a more accurate temporal and spatial accuracy, thus leading to a more realistic 4DCT reconstruction and breathing-adapted treatment planning.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Faculty of MedicineUniversity of HeidelbergHeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Vania Batista
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Jakob Liermann
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Daniel Piro
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
- Department of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
2
|
Nie X, Li G. Real-Time 2D MR Cine From Beam Eye's View With Tumor-Volume Projection to Ensure Beam-to-Tumor Conformality for MR-Guided Radiotherapy of Lung Cancer. Front Oncol 2022; 12:898771. [PMID: 35847879 PMCID: PMC9277147 DOI: 10.3389/fonc.2022.898771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To minimize computation latency using a predictive strategy to retrieve and project tumor volume onto 2D MR beam eye’s view (BEV) cine from time-resolved four-dimensional magnetic resonance imaging (TR-4DMRI) libraries (inhalation/exhalation) for personalized MR-guided intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods Two time-series forecasting algorithms, autoregressive (AR) modeling and deep-learning-based long short-term memory (LSTM), were applied to predict the diaphragm position in the next 2D BEV cine to identify a motion-matched and hysteresis-accounted image to retrieve the tumor volume from the inhalation/exhalation TR-4DMRI libraries. Three 40-s TR-4DMRI (2 Hz, 3 × 80 images) per patient of eight lung cancer patients were used to create patient-specific inhalation/exhalation 4DMRI libraries, extract diaphragmatic waveforms, and interpolate them to f = 4 and 8 Hz to match 2D cine frame rates. Along a (40•f)-timepoint waveform, 30•f training timepoints were moved forward to produce 3×(10•f-1) predictions. The accuracy of position prediction was assessed against the waveform ground truth. The accuracy of tumor volume projections was evaluated using the center-of-mass difference (∆COM) and Dice similarity index against the TR-4DMRI ground truth for both IMRT (six beam angles, 30° interval) and VMAT (240/480 beam angles, 1.5°/0.75° interval, at 4/8 Hz, respectively). Results The accuracy of the first-timepoint prediction is 0.36 ± 0.10 mm (AR) and 0.62 ± 0.21 mm (LSTM) at 4 Hz and 0.06 ± 0.02 mm (AR) and 0.18 ± 0.06 mm (LSTM) at 8 Hz. A 10%–20% random error in prediction-library matching increases the overall uncertainty slightly. For both IMRT and VMAT, the accuracy of projected tumor volume contours on 2D BEV cine is ∆COM = 0.39 ± 0.13 mm and DICE = 0.97 ± 0.02 at 4 Hz and ∆COM = 0.10 ± 0.04 mm and DICE = 1.00 ± 0.00 at 8Hz. Conclusion This study demonstrates the feasibility of accurately predicting respiratory motion during 2D BEV cine imaging, identifying a motion-matched and hysteresis-accounted tumor volume, and projecting tumor volume contour on 2D BEV cine for real-time assessment of beam-to-tumor conformality, promising for optimal personalized MR-guided radiotherapy.
Collapse
Affiliation(s)
- Xingyu Nie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Radiology, University of Kentucky, Lexington, KY, United States
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Okawa K, Inoue M, Sakae T. Development of a tracking error prediction system for the CyberKnife Synchrony Respiratory Tracking System with use of support vector regression. Med Biol Eng Comput 2021; 59:2409-2418. [PMID: 34655052 DOI: 10.1007/s11517-021-02445-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The accuracy of the CyberKnife Synchrony Respiratory Tracking System is dependent on the breathing pattern of a patient. Therefore, the tracking error in each patient must be determined. Support vector regression (SVR) can be used to easily identify the tracking error in each patient. This study aimed to develop a system with SVR that can predict tracking error according to a patient's respiratory waveform. METHODS Datasets of the respiratory waveforms of 93 patients were obtained. The feature variables were variation in respiration amplitude, tumor velocity, and phase shift between tumor and the chest wall, and the target variable was tracking error. A learning model was evaluated with tenfold cross-validation. We documented the difference between the predicted and actual tracking errors and assessed the correlation coefficient and coefficient of determination. RESULTS The average difference and maximum difference between the actual and predicted tracking errors were 0.57 ± 0.63 mm and 2.1 mm, respectively. The correlation coefficient and coefficient of determination were 0.86 and 0.74, respectively. CONCLUSION We developed a system for obtaining tracking error by using SVR. The accuracy of such a system is clinically useful. Moreover, the system can easily evaluate tracking error. We developed a system that can be used to predict the tracking error of SRTS in the CyberKnife Robotic Radiosurgery System using machine learning. The feature variables were the breathing parameters, and the target variable was the tracking error. We used support vector regression algorithm.
Collapse
Affiliation(s)
- Kohei Okawa
- Department Radiotherapy Quality Management, Yokohama CyberKnife Center, Ichizawa-cho 574-1, Asahi-ku, Yokohama, 241-0014, Japan.
- Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, 305-8577, Japan.
| | - Mitsuhiro Inoue
- Department Radiotherapy Quality Management, Yokohama CyberKnife Center, Ichizawa-cho 574-1, Asahi-ku, Yokohama, 241-0014, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, 305-8576, Japan
- Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
4
|
Yang B, Tang KK, Geng H, Lam WW, Wong YS, Huang CY, Chiu TL, Kong CW, Cheung CW, Cheung KY, Yu SK. Comparison of modeling accuracy between Radixact ®and CyberKnife ®Synchrony ®respiratory tracking system. Biomed Phys Eng Express 2021; 7. [PMID: 34416743 DOI: 10.1088/2057-1976/ac1fa5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022]
Abstract
Synchrony Respiratory Tracking system adapted from CyberKnife has been introduced in Radixact to compensate the tumor motion caused by respiration. This study aims to compare the modeling accuracy of the Synchrony system between Radixact and CyberKnife. Two Synchrony plans based on fiducial phantoms were created for CyberKnife and Radixact, respectively. Different respiratory motion traces were used to drive a motion platform to move along the superoinferior and left-right direction. The cycle time and the amplitude of target/surrogate motion of one selected motion trace were scaled to investigate the dependence of modeling accuracy on the motion characteristic. The predicted target position, the correlation error, potential difference (Radixact only) and standard error (CyberKnife only) were extracted from raw data or log files of the two systems. The modeling accuracy was evaluated by calculating the root-mean-square (RMS) error between the predicted target positions and the input motion trace. A threshold T95 within which 95% of the potential difference or the standard error lay was defined and evaluated. Except for the motion trace with a small amplitude and a good (linear) correlation between target and surrogate motion, Radixact showed smaller RMS errors than CyberKnife. The RMS error of both systems increased with the motion amplitude and showed a decreasing trend with the increasing cycle time. No correlation was found between the RMS error and the amplitude of surrogate motion. T95 could be a good estimator of modeling accuracy for CyberKnife rather than Radixact. The correlation error defined in Radixact were largely affected by the number of fiducial markers and the setup error. In general, the modeling accuracy of the Radixact Synchrony system is better than that of the CyberKnife Synchrony system under unfavorable conditions.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - T L Chiu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C W Kong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C W Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
5
|
Ono S, Ueda Y, Ohira S, Isono M, Sumida I, Inui S, Morimoto M, Ashida R, Miyazaki M, Ogawa K, Teshima T. Detectability of fiducials' positions for real-time target tracking system equipping with a standard linac for multiple fiducial markers. J Appl Clin Med Phys 2020; 21:153-162. [PMID: 33058408 PMCID: PMC7700931 DOI: 10.1002/acm2.13050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the detectability of fiducial markers' positions for real-time target tracking system equipping with a standard linac. The hypothesis is that the detectability depends on the type of fiducial marker and the gantry angle of acquired triggered images. METHODS Three types of ball fiducials and four slim fiducials with lengths of 3 and 5 mm were prepared for this study. Triggered images with three similar fiducials were acquired at every 10° during the conformal arc irradiation to detect the target position. Although only one type of arrangement was prepared for the ball fiducials, a three-type arrangement was prepared for the slim fiducials, such as parallel, orthogonal, and oblique with 45° to the gantry-couch direction. To measure the detectability of the real-time target tracking system for each fiducial and arrangement, detected marker positions were compared with expected marker positions at every angle of acquired triggered images. RESULTS For the ball-type fiducial, the maximum difference between the detected marker positions and expected marker positions was 0.3 mm in all directions. For the slim fiducial arranged parallel and oblique with 45°, the maximum difference was 0.4 mm in all directions. When each slim fiducial was arranged orthogonal to the gantry-couch direction, the maximum difference was 1.5 mm for the length of 3 mm, and 3.2 mm for the length of 5 mm. CONCLUSIONS The detectability of fiducial markers' positions for the real-time target tracking system equipping with a standard linac depends on the form and insertion angles of the fiducials.
Collapse
Affiliation(s)
- Shunsuke Ono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Morimoto
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Reiko Ashida
- Department of Cancer survey and gastrointestinal oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Ferris WS, Kissick MW, Bayouth JE, Culberson WS, Smilowitz JB. Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. J Appl Clin Med Phys 2020; 21:96-106. [PMID: 32691973 PMCID: PMC7497925 DOI: 10.1002/acm2.12978] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
The Radixact® linear accelerator contains the motion Synchrony system, which tracks and compensates for intrafraction patient motion. For respiratory motion, the system models the motion of the target and synchronizes the delivery of radiation with this motion using the jaws and multi-leaf collimators (MLCs). It was the purpose of this work to determine the ability of the Synchrony system to track and compensate for different phantom motions using a delivery quality assurance (DQA) workflow. Thirteen helical plans were created on static datasets from liver, lung, and pancreas subjects. Dose distributions were measured using a Delta4® Phantom+ mounted on a Hexamotion® stage for the following three case scenarios for each plan: (a) no phantom motion and no Synchrony (M0S0), (b) phantom motion and no Synchrony (M1S0), and (c) phantom motion with Synchrony (M1S1). The LEDs were placed on the Phantom+ for the 13 patient cases and were placed on a separate one-dimensional surrogate stage for additional studies to investigate the effect of separate target and surrogate motion. The root-mean-square (RMS) error between the Synchrony-modeled positions and the programmed phantom positions was <1.5 mm for all Synchrony deliveries with the LEDs on the Phantom+. The tracking errors increased slightly when the LEDs were placed on the surrogate stage but were similar to tracking errors observed for other motion tracking systems such as CyberKnife Synchrony. One-dimensional profiles indicate the effects of motion interplay and dose blurring present in several of the M1S0 plans that are not present in the M1S1 plans. All 13 of the M1S1 measured doses had gamma pass rates (3%/2 mm/10%T) compared to the planned dose > 90%. Only two of the M1S0 measured doses had gamma pass rates > 90%. Motion Synchrony offers a potential alternative to the current, ITV-based motion management strategy for helical tomotherapy deliveries.
Collapse
Affiliation(s)
- William S. Ferris
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - John E. Bayouth
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Wesley S. Culberson
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jennifer B. Smilowitz
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
7
|
Kawata K, Kamomae T, Oguchi H, Kawabata F, Okudaira K, Kawamura M, Ohtakara K, Itoh Y, Naganawa S. Evaluation of newly implemented dose calculation algorithms for multileaf collimator-based CyberKnife tumor-tracking radiotherapy. Med Phys 2020; 47:1391-1403. [PMID: 31913508 DOI: 10.1002/mp.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In the previous treatment planning system (TPS) for CyberKnife (CK), multileaf collimator (MLC)-based treatment plans could be created only by using the finite-size pencil beam (FSPB) algorithm. Recently, a new TPS, including the FSPB with lateral scaling option (FSPB+) and Monte Carlo (MC) algorithms, was developed. In this study, we performed basic and clinical end-to-end evaluations for MLC-based CK tumor-tracking radiotherapy using the MC, FSPB+, and FSPB. METHODS Water- and lung-equivalent slab phantoms were combined to obtain the percentage depth dose (PDD) and off-center ratio (OCR). The CK M6 system and Precision TPS were employed, and PDDs and OCRs calculated by the MC, FSPB+, and FSPB were compared with the measured doses obtained for 30.8 × 30.8 mm2 and 60.0 × 61.6 mm2 fields. A lung motion phantom was used for clinical evaluation and MLC-based treatment plans were created using the MC. The doses were subsequently recalculated using the FSPB+ and FSPB, while maintaining the irradiation parameters. The calculated doses were compared with the doses measured using a microchamber (for target doses) or a radiochromic film (for dose profiles). The dose volume histogram (DVH) indices were compared for all plans. RESULTS In homogeneous and inhomogeneous phantom geometries, the PDDs calculated by the MC and FSPB+ agreed with the measurements within ±2.0% for the region between the surface and a depth of 250 mm, whereas the doses calculated by the FSPB in the lung-equivalent phantom region were noticeably higher than the measurements, and the maximum dose differences were 6.1% and 4.4% for the 30.8 × 30.8 mm2 and 60.0 × 61.6 mm2 fields, respectively. The maximum distance to agreement values of the MC, FSPB+, and FSPB at the penumbra regions of OCRs were 1.0, 0.6, and 1.1 mm, respectively, but the best agreement was obtained between the MC-calculated curve and measurements at the boundary of the water- and lung-equivalent slabs, compared with those of the FSPB+ and FSPB. For clinical evaluations using the lung motion phantom, under the static motion condition, the dose errors measured by the microchamber were -1.0%, -1.9%, and 8.8% for MC, FSPB+, and FSPB, respectively; their gamma pass rates for the 3%/2 mm criterion comparing to film measurement were 98.4%, 87.6%, and 31.4% respectively. Under respiratory motion conditions, there was no noticeable decline in the gamma pass rates. In the DVH indices, for most of the gross tumor volume and planning target volume, significant differences were observed between the MC and FSPB, and between the FSPB+ and FSPB. Furthermore, significant differences were observed for lung Dmean , V15 Gy , and V20 Gy between the MC, FSPB+, and FSPB. CONCLUSIONS The results indicate that the doses calculated using the MC and FSPB+ differed remarkably in inhomogeneous regions, compared with the FSPB. Because the MC was the most consistent with the measurements, it is recommended for final dose calculations in inhomogeneous regions such as the lung. Furthermore, the sufficient accuracy of dose delivery using MLC-based tumor-tracking radiotherapy by CK was demonstrated for clinical implementation.
Collapse
Affiliation(s)
- Kohei Kawata
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 461-8673, Japan
| | - Takeshi Kamomae
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Oguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 461-8673, Japan
| | - Fumitaka Kawabata
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Kuniyasu Okudaira
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Kazuhiro Ohtakara
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiyuki Itoh
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
8
|
Inoue M, Okawa K, Taguchi J, Hirota Y, Yanagiya Y, Kikuchi C, Iwabuchi M, Murai T, Iwata H, Shiomi H, Koike I, Tatewaki K, Ohta S. Factors affecting the accuracy of respiratory tracking of the image-guided robotic radiosurgery system. Jpn J Radiol 2019; 37:727-734. [PMID: 31367890 DOI: 10.1007/s11604-019-00859-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To analyze the factors affecting the tracking accuracy of the CyberKnife Synchrony Respiratory Tracking System (SRTS). MATERIALS AND METHODS A dynamic motion phantom (motion phantom) reproduced the respiratory motions of each patient treated with the SRTS using a ball as the target. CyberKnife tracked the ball using the SRTS, and this process was recorded by a video camera mounted on the linear accelerator head. The tracking error was evaluated from the images captured by the video camera. Multiple regression analysis was used to identify factors affecting tracking accuracy from 91 cases. RESULTS The median tracking error was 1.9 mm (range 0.9-5.3 mm). Four factors affected the tracking accuracy: the average absolute amplitude of the tumor motion in the cranio-caudal (CC) direction (p = 0.007), average position gap due to the phase shift between the internal tumor and external marker positions in the CC direction (p < 0.001), and average velocity of the tumor in the CC (p < 0.001) and anterior-posterior directions (p = 0.033). CONCLUSION We identified factors that affected tracking accuracy. This information may assist the identification of suitable margins that should be added to each patient's clinical target volume.
Collapse
Affiliation(s)
- Mitsuhiro Inoue
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan.
| | - Kohei Okawa
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Junichi Taguchi
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan
| | - Yoshifumi Hirota
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan
| | - Yohei Yanagiya
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan
| | - Chie Kikuchi
- Department of Radiotherapy Quality Management, Yokohama CyberKnife Center, 574-1, Ichisawa-cho, Asahi-ku, Yokohama, 241-0014, Japan
| | - Michio Iwabuchi
- Department of Radiation Therapy, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Yokohama CyberKnife Center, Yokohama, Japan.,Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Hiroya Shiomi
- Soseikai Clinic CyberKnife Center, Kyoto, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Izumi Koike
- Department of Radiation Oncology, Yokohama CyberKnife Center, Yokohama, Japan.,Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koshi Tatewaki
- Department of Neurosurgery, Yokohama CyberKnife Center, Yokohama, Japan
| | - Seiji Ohta
- Department of Neurosurgery, Yokohama CyberKnife Center, Yokohama, Japan
| |
Collapse
|
9
|
Akino Y, Shiomi H, Sumida I, Isohashi F, Seo Y, Suzuki O, Tamari K, Otani K, Higashinaka N, Hayashida M, Mabuchi N, Ogawa K. Impacts of respiratory phase shifts on motion-tracking accuracy of the CyberKnife Synchrony™ Respiratory Tracking System. Med Phys 2019; 46:3757-3766. [PMID: 30943311 DOI: 10.1002/mp.13523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The SynchronyTM Respiratory Tracking System (SRTS) component of the CyberKnife® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale CA) enables real-time tracking of moving targets by modeling the correlation between the targets and external surrogate light-emitting diode (LED) markers placed on the patient's chest. Previous studies reported some cases with respiratory phase shifts between lung tumor and chest wall motions. In this study, the impacts of respiratory phase shifts on the motion-tracking accuracy of the SRTS were investigated. METHODS A plastic scintillator was used to detect the position of the x-ray beams. The scintillation light was recorded using a camera in a dark room. A moving phantom moved a U-shaped frame on the scintillator with a 4th power of sinusoidal functions. Three metallic markers for motion tracking and four fluorescent tapes were attached to the frame. The fluorescent tapes were used to identify phantom position and respiratory phase for each video frame. The beam positions collected, when considered relative to the phantom motion, represent the degree of tracking error. Beam position was calculated by adding error value to phantom position. Motions with respiratory phase shifts between the target and an extra stage mimicking chest wall motion were also tested for LED markers. Log files of the SRTS were analyzed to evaluate correlation errors. RESULTS When target and LED marker motions were synchronized with a respiratory cycle of 4 s, the maximum tracking errors for 90% and 95% of beam-on time were 1.0 mm and 1.2 mm, respectively. The frequency of tracking errors increased when LED marker motion phase preceded target motion. Tracking errors that corresponded to 90% beam-on time were within 2.4 mm for 5-15% of phase shifts. In contrast, the tracking errors were very large when the LED marker delayed to the target motions; the maximum errors of 90% beam-on time were 3.0, 3.8, and 7.5 mm for 5%, 10%, and 15% of phase shifts, respectively. The patterns of the tracking errors derived from the scintillation light were very similar to those of the correlation data of the SRTS derived from the log files, indicating that the tracking errors caused mainly due to the errors in modeling the correlation data. With long respiratory cycle of 6 s, the tracking errors were significantly decreased; the maximum tracking errors for 95% beam-on time were 1.6 mm and 2.2 mm for early and delayed LED motion. CONCLUSION We have investigated the motion-tracking accuracy of the CyberKnife SRTS for cases with the respiratory phase shift between the target and the LED marker. The maximum tracking errors for 90% probability were within 2.4 mm when the target delays to the LED markers. When LED marker delays, however, very large tracking errors were observed. With a long respiratory cycle, the tracking errors were greatly improved to less than 2.2 mm. Coaching slow breathing will be useful for accurate motion tracking radiotherapy.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, Suita, Osaka, 565-0871, Japan.,Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | - Hiroya Shiomi
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Osamu Suzuki
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | | | - Miori Hayashida
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | | | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Yang B, Chiu TL, Law WK, Geng H, Lam WW, Leung TM, Yiu LH, Cheung KY, Yu SK. Performance evaluation of the CyberKnife system in real-time target tracking during beam delivery using a moving phantom coupled with two-dimensional detector array. Radiol Phys Technol 2019; 12:86-95. [PMID: 30604357 DOI: 10.1007/s12194-018-00495-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The aim of the current study was to evaluate the tracking error of the Synchrony Respiratory Tracking system by conducting beam-by-beam analyses to determine the variation in the tracking beams measured during target motion. A moving phantom of in-house design coupled with a two-dimensional (2D) detector array was used to simulate respiratory motion in the superoinferior (SI) and anteroposterior (AP) direction. A styrofoam block with four implanted fiducial markers was placed on top of the detector to enable the fiducial-based respiratory tracking. Measurements were performed with the phantom under either stationary mode or sinusoidal motion of 6-s cycle and 15/20-mm amplitude at SI and AP direction. The measurement data were saved as movie files that were used to calculate the center shift of the beam with 100-ms sampling time. The tracking accuracy of the system was defined as the targeting error, which could be tracked with probability of > 95% (Ep95). The mean ± standard deviation of Ep95 was 0.28 ± 0.08 mm under stationary condition; 0.66 ± 0.23 mm (range: 0.28-1.22 mm) under sinusoidal respiratory motion. The maximum drift of the beam center for all beam paths was 2.7 mm. The tracking accuracy of CyberKnife Synchrony system was successfully evaluated using a moving phantom and 2D detector array; the maximum tracking error was < 1.5 mm for sinusoidal motion of amplitude ≤ 20 mm.
Collapse
Affiliation(s)
- Bin Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China.
| | - Tin Lok Chiu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Wai Kong Law
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Hui Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Wai Wang Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Tat Ming Leung
- Biomedical Engineering Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Lok Hang Yiu
- Biomedical Engineering Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, China
| |
Collapse
|
11
|
Marants R, Vandervoort E, Cygler JE. Evaluation of the 4D RADPOS dosimetry system for dose and position quality assurance of CyberKnife. Med Phys 2018; 45:4030-4044. [PMID: 30043980 DOI: 10.1002/mp.13102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/28/2024] Open
Abstract
PURPOSE The Synchrony respiratory motion tracking of the CyberKnife system purports to provide real-time tumor motion compensation during robotic radiosurgery. Such a complex delivery system requires thorough quality assurance. In this work, RADPOS applicability as a dose and position quality assurance tool for CyberKnife treatments is assessed quantitatively for different phantom types and breathing motions, which increase in complexity to more closely resemble clinical situations. METHODS Two radiotherapy treatment experiments were performed where dose and position were measured with the RADPOS probe housed within a Solid Water phantom. For the first experiment, a Solid Water breast phantom was irradiated using isocentric beam delivery while stationary or moving sinusoidally in the anterior/posterior direction. For the second experiment, a phantom consisting of a Solid Water tumor in lung equivalent material was irradiated using isocentric and non-isocentric beam delivery while either stationary or moving. The phantom movement was either sinusoidal or based on a real patient's breathing waveform. For each experiment, RADPOS dose measurements were compared to EBT3 GafChromic film dose measurements and the CyberKnife treatment planning system's (TPS) Monte Carlo and ray-tracing dose calculation algorithms. RADPOS position measurements were compared to measurements made by the CyberKnife system and to the predicted breathing motion models used by the Synchrony respiratory motion compensation. RESULTS For the static and dynamic (i.e., sinusoidal motion) cases of the breast experiment, RADPOS, film and the TPS agreed at the 2.0% level within 1.1 σ of estimated combined uncertainties. RADPOS position measurements were in good agreement with LED and fiducial position measurements, where the average standard deviation (SD) of the differences between any two of the three position datasets was ≤0.5 mm for all directions. For the 10 mm peak to peak amplitude sinusoidal motion of the breast experiment, the average Synchrony correlation errors were ≤0.2 mm, indicative of an accurate predictive model. For all the cases of the lung experiment, RADPOS and film measurements agreed with each other at the 2.0% level within 1.5 σ of estimated experimental uncertainties provided that the measurements were corrected for imaging dose. The measured dose for RADPOS and film were 4.0% and 3.4% higher, respectively, than the TPS for the most complex dynamic cases (i.e., irregular motion) considered for the lung experiment. Assessment of the Synchrony correlation models by RADPOS showed that model accuracy declined as motion complexity increased; the SD of the differences between RADPOS and model position data measurements was ≤0.8 mm for sinusoidal motion but increased to ≤2.6 mm for irregular patient waveform motion. These results agreed with the Synchrony correlation errors reported by the CyberKnife system. CONCLUSIONS RADPOS is an accurate and precise QA tool for dose and position measurements for CyberKnife deliveries with respiratory motion compensation.
Collapse
Affiliation(s)
- Raanan Marants
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Eric Vandervoort
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, ON, K1H 8L6, Canada
| | - Joanna E Cygler
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
12
|
Akino Y, Sumida I, Shiomi H, Higashinaka N, Murashima Y, Hayashida M, Mabuchi N, Ogawa K. Evaluation of the accuracy of the CyberKnife Synchrony™ Respiratory Tracking System using a plastic scintillator. Med Phys 2018; 45:3506-3515. [PMID: 29858498 DOI: 10.1002/mp.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The Synchrony™ Respiratory Tracking System of the CyberKnife® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale, CA, USA) enables real-time tracking of moving targets such as lung and liver tumors during radiotherapy. Although film measurements have been used for quality assurance of the tracking system, they cannot evaluate the temporal tracking accuracy. We have developed a verification system using a plastic scintillator that can evaluate the temporal accuracy of the CyberKnife Synchrony. METHODS A phantom consisting of a U-shaped plastic frame with three fiducial markers was used. The phantom was moved on a plastic scintillator plate. To identify the phantom position on the recording video in darkness, four pieces of fluorescent tape representing the corners of a 10 cm × 10 cm square around an 8 cm × 8 cm window were attached to the phantom. For a stable respiration model, the phantom was moved with the fourth power of a sinusoidal wave with breathing cycles of 4, 3, and 2 s and an amplitude of 1 cm. To simulate irregular breathing, the respiratory cycle was varied with Gaussian random numbers. A virtual target was generated at the center of the fluorescent markers using the MultiPlan™ treatment planning system. Photon beams were irradiated using a fiducial tracking technique. In a dark room, the fluorescent light of the markers and the scintillation light of the beam position were recorded using a camera. For each video frame, a homography matrix was calculated from the four fluorescent marker positions, and the beam position derived from the scintillation light was corrected. To correct the displacement of the beam position due to oblique irradiation angles and other systematic measurement errors, offset values were derived from measurements with the phantom held stationary. RESULTS The average SDs of beam position measured without phantom motion were 0.16 and 0.20 mm for lateral and longitudinal directions, respectively. For the stable respiration model, the tracking errors (mean ± SD) were 0.40 ± 0.64 mm, -0.07 ± 0.79 mm, and 0.45 ± 1.14 mm for breathing cycles of 4, 3, and 2 s, respectively. The tracking errors showed significant linear correlation with the phantom velocity. The correlation coefficients were 0.897, 0.913, and 0.957 for breathing cycles of 4, 3, and 2 s, respectively. The unstable respiration model also showed linear correlation between tracking errors and phantom velocity. The probability of tracking error incidents increased with decreasing length of the respiratory cycles. Although the tracking error incidents increased with larger variations in respiratory cycle, the effect on the cumulative probability was insignificant. For a respiratory cycle of 4 s, the maximum tracking error was 1.10 and 1.43 mm at the probability of 10% and 5%, respectively. Large tracking errors were observed when there was phase shift between the tumor and the LED marker. CONCLUSION This technique allows evaluation of the motion tracking accuracy of the Synchrony™ system over time by measurement of the photon beam. The velocity of the target and phase shift have significant effects on accuracy.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroya Shiomi
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | - Miori Hayashida
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | | | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy. Phys Med 2018; 49:11-18. [PMID: 29866336 DOI: 10.1016/j.ejmp.2018.04.393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm2 to 351.11 mm2 (uncompensated), which reduced to from 17.72 mm2 to 66.17 mm2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target.
Collapse
|
14
|
Iwata H, Ishikura S, Murai T, Iwabuchi M, Inoue M, Tatewaki K, Ohta S, Yokota N, Shibamoto Y. A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm for lung tumors. Int J Clin Oncol 2017; 22:706-714. [DOI: 10.1007/s10147-017-1123-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/05/2017] [Indexed: 12/25/2022]
|
15
|
Iwata H, Sato K, Nomura R, Tabei Y, Suzuki I, Yokota N, Inoue M, Ohta S, Yamada S, Shibamoto Y. Long-term results of hypofractionated stereotactic radiotherapy with CyberKnife for growth hormone-secreting pituitary adenoma: evaluation by the Cortina consensus. J Neurooncol 2016; 128:267-75. [PMID: 26961771 DOI: 10.1007/s11060-016-2105-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to evaluate the safety and feasibility of hypofractionated stereotactic radiotherapy (SRT) with CyberKnife for growth hormone-secreting pituitary adenoma (GH-PA). Fifty-two patients with GH-PA were treated with hypofractionated SRT between September 2001 and October 2012. Eight patients had clinically silent GH-PA and 44 were symptomatic. Only 1 patient was inoperable. The other patients had recurrent or postoperative residual tumors on MRI. All patients had received pharmacotherapy prior to SRT with a somatostatin analog, dopamine agonist, and/or GH receptor antagonist. The marginal doses were 17.4-26.8 Gy for the 3-fraction schedule and 20.0-32.0 Gy for the 5-fraction schedule. Endocrinological remission was assessed by the Cortina consensus criteria 2010 (random GH <1 ng/ml or nadir GH after an oral glucose tolerance test <0.4 ng/ml and normalization of age- and sex-adjusted insulin-like growth factor-1). The median follow-up period was 60 months (range 27-137). The 5-year overall survival, local control, and disease-free survival rates were 100, 100, and 96 %, respectively. Nine patients (5 clinically silent and 4 symptomatic patients) satisfied the Cortina criteria without receiving further pharmacotherapy, whereas the remaining 43 patients did not. No post-SRT grade 2 or higher visual disorder occurred. Symptomatic post-SRT hypopituitarism was observed in 1 patient. CyberKnife hypofractionated SRT is safe and effective when judged by imaging findings for GH-PA. However, it may be difficult to satisfy the Cortina consensus criteria in most symptomatic patients with SRT alone. Further investigations of optimal treatments are warranted.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan. .,Department of Neurosurgery, Yokohama CyberKnife Center, Yokohama, Japan.
| | - Kengo Sato
- Department of Neurosurgery, CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Ryutaro Nomura
- Department of Neurosurgery, CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yusuke Tabei
- Department of Neurosurgery, CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Ichiro Suzuki
- Department of Neurosurgery, CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Naoki Yokota
- Department of Neurosurgery, Yokohama CyberKnife Center, Yokohama, Japan.,Radiation Oncology Center, Suzukake Central Hospital, Hamamatsu, Japan
| | - Mitsuhiro Inoue
- Division of Quality Management with Radiotherapy, Yokohama CyberKnife Center, Yokohama, Japan
| | - Seiji Ohta
- Department of Neurosurgery, Yokohama CyberKnife Center, Yokohama, Japan
| | - Shozo Yamada
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
16
|
Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, Mabuchi N, Tsuda E, Ogawa K. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys 2016; 17:74-84. [PMID: 27074474 PMCID: PMC5875552 DOI: 10.1120/jacmp.v17i2.5914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/04/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022] Open
Abstract
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc
Collapse
Affiliation(s)
- Iori Sumida
- Osaka University Graduate School of Medicine; CyberKnife Center.
| | | | | | | | | | | | | | | | | |
Collapse
|