1
|
Nikandrovs M, McClean B, Shields L, McCavana P, Vintró LL. Clinical treatment planning for kilovoltage radiotherapy using EGSnrc and Python. J Appl Clin Med Phys 2023; 24:e13832. [PMID: 36444164 PMCID: PMC9924114 DOI: 10.1002/acm2.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Kilovoltage radiotherapy dose calculations are generally performed with manual point dose calculations based on water dosimetry. Tissue heterogeneities, irregular surfaces, and introduction of lead cutouts for treatment are either not taken into account or crudely approximated in manual calculations. Full Monte Carlo (MC) simulations can account for these limitations but require a validated treatment unit model, accurately segmented patient tissues and a treatment planning interface (TPI) to facilitate the simulation setup and result analysis. EGSnrc was used in this work to create a model of Xstrahl kilovoltage unit extending the range of energies, applicators, and validation parameters previously published. The novel functionality of the Python-based framework developed in this work allowed beam modification using custom lead cutouts and shields, commonly present in kilovoltage treatments, as well as absolute dose normalization using the output of the unit. 3D user-friendly planning interface of the developed framework facilitated non-co-planar beam setups for CT phantom MC simulations in DOSXYZnrc. The MC models of 49 clinical beams showed good agreement with measured and reference data, to within 2% for percentage depth dose curves, 4% for beam profiles at various depths, 2% for backscatter factors, 0.5 mm of absorber material for half-value layers, and 3% for output factors. End-to-end testing of the framework using custom lead cutouts resulted in good agreement to within 3% of absolute dose distribution between simulations and EBT3 GafChromic film measurements. Gamma analysis demonstrated poor agreement at the field edges which was attributed to the limitations of simulating smooth cutout shapes. Dose simulated in a heterogeneous phantom agreed to within 7% with measured values converted using the ratio of mass energy absorption coefficients of appropriate tissues and air.
Collapse
Affiliation(s)
- Mihails Nikandrovs
- School of PhysicsUniversity College DublinBelfieldIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Brendan McClean
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Laura Shields
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Patrick McCavana
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Luis León Vintró
- School of PhysicsUniversity College DublinBelfieldIreland
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
| |
Collapse
|
2
|
Xiong Z, Zhong Y, Banks TI, Reynolds R, Chiu T, Tan J, Zhang Y, Parsons D, Yan Y, Godley A, Stojadinovic S. Machine characterization and central axis depth dose data of a superficial x-ray radiotherapy unit. Biomed Phys Eng Express 2022; 9. [PMID: 36541531 DOI: 10.1088/2057-1976/aca611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Objectives. The purpose of this study is to present data from the clinical commissioning of an Xstrahl 150 x-ray unit used for superficial radiotherapy,Methods. Commissioning tasks included vendor acceptance tests, timer reproducibility, linearity and end-effect measurements, half-value layer (HVL) measurements, inverse square law verification, head-leakage measurements, and beam output calibration. In addition, percent depth dose (PDD) curves were determined for different combinations of filter/kV settings and applicators. Automated PDD water phantom scans were performed utilizing four contemporary detectors: a microDiamond detector, a microSilicon detector, an EDGE detector, and a PinPoint ionization chamber. The measured PDD data were compared to the published values in BJR Supplement 25,Results. The x-ray unit's mechanical, safety, and radiation characteristics were within vendor-stated specifications. Across sixty commissioned x-ray beams, the PDDs determined in water using solid state detectors were in excellent agreement with the BJR 25 data. For the lower (<100 kVp) and medium-energy (≥100 kVp) superficial beams the average agreement was within [-3.6,+0.4]% and [-3.7,+1.4]% range, respectively. For the high-energy superficial (low-energy orthovoltage) x-rays at 150 kVp, the average difference for the largest 20 × 20 cm2collimator was (-0.7 ± 1.0)%,Conclusions. This study presents machine characterization data collected for clinical use of a superficial x-ray unit. Special focus was placed on utilizing contemporary detectors and techniques for the relative PDD measurements using a motorized water phantom. The results in this study confirm that the aggregate values published in the BJR 25 report still serve as a valid benchmark when comparing data from site-specific measurements, or the reference data for clinical utilization without such measurements,Advances in knowledge. This paper presents comprehensive data from the acceptance and commissioning of a modern kilovoltage superficial x-ray radiotherapy machine. Comparisons between the PDD data measured in this study using different detectors and BJR 25 data are highlighted.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.,Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States of America
| | - Yuncheng Zhong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Thomas I Banks
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Robert Reynolds
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Tsuicheng Chiu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Jun Tan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Yulong Yan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
3
|
Mahuvava C, Esplen NM, Poirier Y, Kry SF, Bazalova-Carter M. Dose calculations for pre-clinical radiobiology experiments conducted with single-field cabinet irradiators. Med Phys 2022; 49:1911-1923. [PMID: 35066889 DOI: 10.1002/mp.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To provide percentage depth-dose (PDD) data along the central axis for dosimetry calculations in small-animal radiation biology experiments performed in cabinet irradiators. The PDDs are provided as a function of source-to-surface distance (SSD), field size and animal size. METHODS The X-ray tube designs for four biological cabinet irradiators, the RS2000, RT250, MultiRad350 and XRAD320, were simulated using the BEAMnrc Monte Carlo code to generate 160, 200, 250 and 320 kVp photon beams, respectively. The 320 kVp beam was simulated with two filtrations: a soft F1 aluminium filter and a hard F2 thoraeus filter made of aluminium, tin and copper. Beams were collimated into circular fields with diameters of 0.5 - 10 cm at SSDs of 10 - 60 cm. Monte Carlo dose calculations in 1 - 5-cm diameter homogeneous (soft tissue) small-animal phantoms as well as in heterogeneous phantoms with 3-mm diameter cylindrical lung and bone inserts (rib and cortical bone) were performed using DOSXYZnrc. The calculated depth doses in three test-cases were estimated by applying SSD, field size and animal size correction factors to a reference case (40 cm SSD, 1 cm field and 5 cm animal size) and these results were compared with the specifically simulated (i.e., expected) doses to assess the accuracy of this method. Dosimetry for two test-case scenarios of 160 and 250 kVp beams (representative of end-user beam qualities) was also performed, whereby the simulated PDDs at two different depths were compared with the results based on the interpolation from reference data. RESULTS The depth doses for three test-cases calculated at 200, 320 kVp F1 and 320 kVp F2, with half value layers (HVL) ranging from ∼0.6 mm to 3.6 mm Cu, agreed well with the expected doses, yielding dose differences of 1.2, 0.1 and 1.0%, respectively. The two end-user test-cases for 160 and 250 kVp beams with respective HVLs of ∼0.8 and 1.8 mm Cu yielded dose differences of 1.4 and 3.2% between the simulated and the interpolated PDDs. The dose increase at the bone-tissue proximal interface ranged from 1.2 to 2.5 times the dose in soft tissue for rib and 1.3 to 3.7 times for cortical bone. The dose drop-off at 1-cm depth beyond the bone ranged from 1.3 - 6.0% for rib and 3.2 - 11.7% for cortical bone. No drastic dose perturbations occurred in the presence of lung, with lung-tissue interface dose of >99% of soft tissue dose and <3% dose increase at 1-cm depth beyond lung. CONCLUSIONS The developed dose estimation method can be used to translate the measured dose at a point to dose at any depth in small-animal phantoms, making it feasible for pre-clinical calculation of dose distributions in animals irradiated with cabinet-style irradiators. The dosimetric impact of bone must be accurately quantified as dramatic dose perturbations at and beyond the bone interfaces can occur due to the relative importance of the photoelectric effect at kilovoltage energies. These results will help improve dosimetric accuracy in pre-clinical experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Courage Mahuvava
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Nolan Matthew Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Yannick Poirier
- Department of Medical Physics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson, Cancer Centre, Houston, TX, 77030, USA
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
4
|
Poirier Y, Johnstone CD, Kirkby C. The potential impact of ultrathin filter design on dosimetry and relative biological effectiveness in modern image-guided small animal irradiators. Br J Radiol 2018; 92:20180537. [PMID: 30281330 DOI: 10.1259/bjr.20180537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: Modern image-guided small animal irradiators like the Xstrahl Small Animal Radiation Research Platform (SARRP) are designed with ultrathin 0.15 mm Cu filters, which compared with more heavily filtrated traditional cabinet-style biological irradiators, produce X-ray spectra weighted toward lower energies, impacting the dosimetric properties and the relative biological effectiveness (RBE). This study quantifies the effect of ultrathin filter design on relative depth dose profiles, absolute dose output, and RBE using Monte Carlo techniques. METHODS: The percent depth-dose and absolute dose output are calculated using kVDoseCalc and EGSnrc, respectively, while a tally based on the induction of double-strand breaks as a function of electron spectra invoked in PENELOPE is used to estimate the RBE. RESULTS: The RBE increases by >2.4% in the ultrathin filter design compared to a traditional irradiator. Furthermore, minute variations in filter thickness have notable effects on the dosimetric properties of the X-ray beam, increasing the percent depth dose (at 2 cm in water) by + 0.4%/0.01 mm Cu and decreasing absolute dose (at 2 cm depth in water) by -1.8%/0.01 mm Cu for the SARRP. CONCLUSIONS: These results show that modern image-guided irradiators are quite sensitive to small manufacturing variations in filter thickness, and show a small change in RBE compared to traditional X-ray irradiators. ADVANCES IN KNOWLEDGE: We quantify the consequences of ultrathin filter design in modern image-guided biological irradiators on relative and absolute dose, and RBE. Our results show these to be small, but not insignificant, suggesting laboratories transitioning between irradiators should carefully design their radiobiological experiments.
Collapse
Affiliation(s)
- Yannick Poirier
- 1 Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland School of Medicine , Baltimore, MD , USA.,2 Department of Radiation Oncology, Division of Medical Physics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Christopher Daniel Johnstone
- 1 Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland School of Medicine , Baltimore, MD , USA.,3 Department of Physics and Astronomy, University of Victoria , Victoria, BC , Canada
| | - Charles Kirkby
- 4 Department of Medical Physics, Jack Ady Cancer Center , Lethbridge, AB , Canada.,5 Department of Physics and Astronomy, University of Calgary , Calgary, AB , Canada.,6 Department of Oncology, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
5
|
Martell K, Poirier Y, Zhang T, Hudson A, Spencer D, Jacso F, Hayashi R, Banerjee R, Khan R, Wolfe N, Voroney JP. Radiation therapy for deep periocular cancer treatments when protons are unavailable: is combining electrons and orthovoltage therapy beneficial? JOURNAL OF RADIATION RESEARCH 2018; 59:593-603. [PMID: 30053071 PMCID: PMC6151628 DOI: 10.1093/jrr/rry045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Deep periocular cancers can be difficult to plan and treat with radiation, given the difficulties in apposing bolus to skin, and the proximity to the retina and other optic structures. We sought to compare the combination of electrons and orthovoltage therapy (OBE) with existing modalities for these lesions. Four cases-a retro-orbital melanoma (Case 1) and basal cell carcinomas, extending across the eyelid (Case 2) or along the medial canthus (Cases 3-4)-were selected for comparison. In each case, radiotherapy plans for electron only, 70% electron and 30% orthovoltage (OBE), volumetric-modulated arc therapy (VMAT), conformal arc, and protons were compared. Dose-volume histograms for planning target volume coverage and selected organs at risk (OARs) were then calculated. The V90% coverage of the planning target volume was >98% for electrons, VMAT, conformal arc and proton plans and 90.2% and 89.5% in OBE plans for Cases 2 and 3, respectively. The retinal V80% was >98% in electron, VMAT and proton plans and 79.4%; and 87.1% in OBE and conformal arcs for Case 2 and 91.3%, 36.4%, 56.9%, 52.4% and 43.7% for Case 3 in electrons, OBE, VMAT, conformal arc and proton plans, respectively. Protons provided superior coverage, homogeneity and OAR sparing, compared with all other modalities. However, given its simplicity and widespread availability, OBE is a potential alternative treatment option for moderately deep lesions where bolus placement is difficult.
Collapse
Affiliation(s)
- Kevin Martell
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland, 22 S Greene St, Baltimore, MD, USA
| | - Tiezhi Zhang
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave., CB, St. Louis, MO, USA
| | - Alana Hudson
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - David Spencer
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Ferenc Jacso
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Richard Hayashi
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Robyn Banerjee
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Rao Khan
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave., CB, St. Louis, MO, USA
| | - Nathan Wolfe
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| | - Jon-Paul Voroney
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre 1331 29 Street Northwest, Calgary, Alberta, Canada
- Calgary Zone, Alberta Health Services, Foothills Medical Centre, 1331-29 ST NW, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Johnstone CD, Bazalova-Carter M. MicroCT imaging dose to mouse organs using a validated Monte Carlo model of the small animal radiation research platform (SARRP). Phys Med Biol 2018; 63:115012. [PMID: 29741161 DOI: 10.1088/1361-6560/aac335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The goal of this work was to establish imaging dose to mouse organs with a validated Monte Carlo (MC) model of the image-guided Small Animal Radiation Research Platform (SARRP) and to investigate the effect of scatter from the internal walls on animal therapy dose determination. A MC model of the SARRP was built in the BEAMnrc code and validated with a series of homogeneous and heterogeneous phantom measurements. A segmented microCT scan of a mouse was used in DOSXYZnrc to determine mouse organ microCT imaging doses to 15-35 g mice for the SARRP pancake (mouse lying on couch) and standard (mouse standing on couch) imaging geometries for 40-80 kVp tube voltages. Imaging dose for off-center positioning shifts and maintaining image noise across tube voltages were also calculated. Half-value layer (HVL) measurements for the 220 kVp therapy beam in the presence of the SARRP shielding cabinet were modeled in BEAMnrc and compared to the 100 cm source-to-detector distance (SDD) in the scatter free, narrow-beam geometry recommended by the American Association of Physicists in Medicine Task Group 61 (AAPM TG-61). For a 60 kVp, 0.8 mA, and 60 s scan protocol, maximum mean organ imaging doses to boney and non-boney structures were 10.5 cGy and 3.5 cGy, respectively, for an average size 20 g mouse. Current-exposure combinations above 323, 203, 147, 116, and 95 mAs for 40-80 kVp tube voltages, respectively, will increase body doses above 10 cGy. MicroCT mean body dose was 18% lower in pancake compared to standard imaging geometry. An 11% difference in measured HVL at a 50 cm SDD was found compared to MC simulated HVL for the AAPM TG-61 recommended scatter free geometry at a 100 cm SDD. This change in HVL resulted in a 0.5% change in absorbed dose to water calculations for the treatment beam.
Collapse
|
7
|
Acuña-Gómez OL, Garnica-Garza HM. Improvement of kilovoltage beam output with a transmission x-ray target: radiological optimization and cooling system design. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa99eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Poirier Y, Tambasco M. Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom. J Appl Clin Med Phys 2016; 17:155-171. [PMID: 27455477 PMCID: PMC5690031 DOI: 10.1120/jacmp.v17i4.6021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 03/15/2016] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
We present an experimental validation of a kilovoltage (kV) X‐ray source characterization model in an anthropomorphic phantom to estimate patient‐specific absorbed dose from kV cone‐beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT‐dose index (CTDIw) dose estimates. We simulated the default Varian on‐board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard‐dose head, low‐dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X‐ray point‐source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in‐house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within ≤2% of local dose, except in regions of high‐dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from 2.4%±6.0% to 5.7%±10.3%, depending on the characterized CBCT imaging protocol. The low‐dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal CTDIw would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X‐ray source could be used to accurately assess patient‐specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further evidence that existing CTDIw assessments underestimate absorbed dose delivered to patients. PACS number(s): 87.57.Q‐, 87.57.uq, 87.10.Rt
Collapse
|