1
|
Yuan C, Xu S, Li Y, Quan E, Chen D, Liang J, Liu C. Assessment of different head tilt angles in volumetric modulated arc therapy for hippocampus-avoidance whole-brain radiotherapy. Front Oncol 2024; 14:1415471. [PMID: 38993636 PMCID: PMC11236617 DOI: 10.3389/fonc.2024.1415471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Purpose In the field of radiation therapy for brain metastases, whole-brain hippocampus-avoidance treatment is commonly employed. this study aims to examine the impact of different head tilt angles on the dose distribution in the whole-brain target area and organs at risk. It also aims to determine the head tilt angle to achieve optimal radiation therapy outcomes. Methods CT images were collected from 8 brain metastases patients at 5 different groups of head tilt angle. The treatment plans were designed using the volumetric modulated arc therapy (VMAT) technique. The 5 groups of tilt angle were as follows: [0°,10°), [10°,20°), [20°,30°), [30°,40°), and [40°,45°]. The analysis involved assessing parameters such as the uniformity index, conformity index, average dose delivered to the target, dose coverage of the target, hot spots within the target area, maximum dose, and average dose received by organs at risk. Additionally, the study evaluated the correlation between hippocampal dose and other factors, and established linear regression models. Results Significant differences in dosimetric results were observed between the [40°,45°] and [0°,10°) head tilt angles. The [40°,45°] angle showed significant differences compared to the [0°,10°) angle in the average dose in the target area (31.49 ± 0.29 Gy vs. 31.99 ± 0.29 Gy, p=0.016), dose uniformity (1.20 ± 0.03 vs. 1.24 ± 0.03, p=0.016), hotspots in the target area (33.64 ± 0.35 Gy vs. 34.42 ± 0.49 Gy, p=0.016), maximum hippocampal dose (10.73 ± 0.36 Gy vs. 11.66 ± 0.59 Gy, p=0.008), maximum dose in the lens (2.82 ± 1.10 Gy vs. 4.99 ± 0.16 Gy, p=0.016), and average dose in the lens (1.93 ± 0.29 Gy vs. 4.22 ± 0.26 Gy, p=0.008). There is a moderate correlation between the maximum dose in the hippocampi and the PTV length (r=0.49, p=0.001). Likewise, the mean dose in the hippocampi is significantly correlated with the hippocampi length (r=0.34, p=0.04). Conclusion The VMAT plan with a head tilt angle of [40°,45°] met all dose constraints and demonstrated improved uniformity of the target area while reducing the dose to organs at risk. Furthermore, the linear regression models suggest that increasing the head tilt angle within the current range of [0°,45°] is likely to lead to a decrease in the average hippocampal dose.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenbin Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
2
|
Yadala A, Mukherjee A, Neelakandan V, Karunanithi A, Dubashi B, Menon V, Elumalai T, Bharathi D, Gundapuneedi BS, Loganathan V. Safety and Feasibility of Hippocampal Sparing Cranial Radiation in Pediatric and Adolescent Acute Lymphoblastic Leukemia Patients: A Prospective Study. Cureus 2024; 16:e62715. [PMID: 39036107 PMCID: PMC11259313 DOI: 10.7759/cureus.62715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Acute lymphoblastic leukemia (ALL) constitutes a significant portion of pediatric malignancies, with central nervous system (CNS) relapse posing a considerable threat to patient outcomes. While cranial radiation therapy (CRT) has been utilized to mitigate CNS relapse, it is associated with neurocognitive (NC) side effects. This study explores the feasibility and safety of using volumetric arc therapy (VMAT) with hippocampal sparing (HS) during cranial radiation therapy for ALL patients, aiming to reduce these side effects. Methodology This prospective observational study included pediatric and young adult patients with ALL who were in remission. HS was achieved using VMAT, and NC assessments were performed at baseline, six months, one year, and, to a limited extent, four years posttreatment. Results VMAT enabled precise hippocampal-sparing CRT with minimal dose to the hippocampus. Dosimetric analysis revealed that patients receiving 18 Gy had mean doses to planning target volume (PTV) and bilateral hippocampus of 18.9 and 9 Gy, respectively. Those receiving 12 Gy had corresponding doses of 13.3 and 7 Gy, respectively. Conformity and homogeneity indices were 0.9 and 0.1, and no brain relapses were observed among the patients in this study. NC assessments demonstrated no decline in intelligence quotient (IQ) scores over time, while only a subset of patients could be assessed at the four-year mark; telephone interviews suggested no significant cognitive decline. Conclusions This study highlights the potential of VMAT with HS as a promising approach to CRT for ALL patients in reducing the risk of NC side effects. The absence of brain relapses and preservation of NC function are encouraging findings, though larger studies are necessary to establish conclusive evidence.
Collapse
Affiliation(s)
- Ambedkar Yadala
- Radiation Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Ashutosh Mukherjee
- Radiation Oncology, Homi Bhabha Cancer Hospital and Mahamana Pandit Madan Mohan Malaviya Cancer Center (MPMMCC) Tata Memorial Center, Varanasi, IND
| | - Vijayaprabhu Neelakandan
- Radiation Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Arivazhagan Karunanithi
- Clinical Psychology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Biswajit Dubashi
- Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| | - Vikas Menon
- Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Thiraviyam Elumalai
- Clinical Oncology, Cambridge University Hospitals NHS Foundation Trust, Manchester, GBR
| | - Deepak Bharathi
- Radiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Bhargav S Gundapuneedi
- Radiation Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Vignesh Loganathan
- Community Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
3
|
Giakoumettis G, Gkantaifi A, Giakoumettis D, Papanastasiou E, Plataniotis G, Misailidou D, Kouskouras K, Bamidis PD, Siountas A. Sparing the Hippocampus in Prophylactic Cranial Irradiation Using Three Different Linear Accelerators: A Comparative Study. Cureus 2024; 16:e63137. [PMID: 39055412 PMCID: PMC11272133 DOI: 10.7759/cureus.63137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hippocampus protection, as an organ at risk in brain radiotherapy, might protect patients' quality of life. Prophylactic cranial irradiation (PCI) has been used traditionally in small cell lung cancer (SCLC) patients as it increases survival. This study aimed to discover the contributing parameters for a successful PCI with simultaneous protection of the hippocampus by using three different treatment machines. For this purpose, treatment plans were generated for 45 SCLC patients using three half-arcs in three linear accelerators (LINACs; Elekta Infinity, Synergy, and Axesse; Elekta Ltd, Stockholm, Sweden) with different radiation field sizes and multileaf collimator (MLC) leaf thickness characteristics. The prescribed dose was 25 Gy in 10 fractions. Thresholds for the hippocampus were calculated based on the Radiation Therapy Oncology Group 0933 dose constraints. The planning and treatment system templates were common to all three LINACs. Plan evaluation was based on the dosimetric target coverage by the 95% isodose, the maximum dose of the plan, the conformity index (CI), the degree of plan modulation (MOD), and the patient-specific quality assurance (QA) pass rate. The mean target coverage was highest for Infinity (97.3%), followed by Axesse (96.6%) and Synergy (95.5%). The mean maximum dose was higher for Synergy (27.5 Gy), followed by Infinity (27.0 Gy) and Axesse (26.9 Gy). Axesse plans had the highest CI (0.93), followed by Infinity (0.91) and Synergy (0.88). Plan MOD was lower for Synergy (2.88) compared with Infinity (3.07) and Axesse (3.69). Finally, patient-specific QA was successful in all Infinity plans, in all but one Synergy plan, and in 17/45 Axesse plans, as was expected from the field size in that treatment unit. Based on overall performance, the most favorable combination of target coverage, hippocampus sparing, and plan deliverability was obtained with the LINAC, which has the largest field opening and thinnest MLC leaves.
Collapse
Affiliation(s)
- Georgios Giakoumettis
- Medical Physics and Digital Innovation Laboratory, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Areti Gkantaifi
- Radiation Oncology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Radiation Oncology, Theagenio Cancer Hospital of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Giakoumettis
- Neurosurgery, Agios Savvas, General Anticancer-Oncological Hospital of Athens, Athens, GRC
| | - Emmanouil Papanastasiou
- Medical Physics and Digital Innovation Laboratory, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Georgios Plataniotis
- Radiation Oncology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Despoina Misailidou
- Radiation Oncology, Interbalkan European Medical Center of Thessaloniki, Thessaloniki, GRC
| | - Konstantinos Kouskouras
- Radiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Anastasios Siountas
- Medical Physics and Digital Innovation Laboratory, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
4
|
Li Y, Yuan C, Chen D, Xu S, Jiang W, Huang J, Ye S, Zhang Y, Liang J, Liu C. Comparison of Different Head Tilt Angles in Tomotherapy and Volumetric Modulated Arc Therapy for Hippocampal-Avoidance Whole-Brain Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241281326. [PMID: 39233627 PMCID: PMC11375751 DOI: 10.1177/15330338241281326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
PURPOSE Hippocampal-avoidance whole-brain radiotherapy (HA-WBRT) planning can present challenges. This study examines the influence of head tilt angles on the dosimetric characteristics of target and organs at risk (OARs), aiming to identify the optimal tilt angle that yields optimal dosimetric outcomes using tomotherapy (TOMO). METHODS Eight patients diagnosed with brain metastases underwent CT scans at five tilt angles: [0°, 10°), [10°, 20°), [20°, 30°), [30°, 40°), and [40°, 45°]. Treatment plans were generated using TOMO and volumetric modulated arc therapy (VMAT). Dosimetric parameters including conformity index (CI), homogeneity index (HI), D2cc, D98%, and Dmean of PTV, as well as Dmax, and Dmean of OARs were analyzed. Furthermore, a comparison was made between the dosimetric parameters of TOMO and VMAT plans. Finally, delivery efficiency of TOMO plans were assessed. RESULTS For the PTV, [40°, 45°] tilt angle demonstrated significantly better conformity, homogeneity, lower D2cc, and lower Dmean for the PTV. Regarding the OARs, the [40°, 45°] head tilt angle demonstrated significantly lower Dmax and Dmean in hippocampus, eyes, optic chiasm, and optic nerves. The [40°, 45°] tilt angle also showed significantly lower Dmax for brainstem and cochleas, as well as a lower Dmean for lens. In the [40°,45°] tilt angle for HA-WBRT, TOMO showed superior performance over VMAT for the PTV. TOMO achieved lower Dmax for brainstem, cochleas, optic nerves, and optic chiasm, as well as a lower Dmean for hippocampus. Furthermore, a significant correlation was found between delivery time and the PTV projection length in the sagittal plane. CONCLUSION The TOMO plan utilizing a tilt angle range of [40°, 45°] demonstrated superior PTV conformity and uniformity, along with enhanced OARs sparing. Furthermore, it exhibited a dosimetric advantage over VMAT for PTV and most OARs at the same angle range.
Collapse
Affiliation(s)
- Yang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Cuiyun Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Dongjie Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Sisi Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Jiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiaxin Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shanshan Ye
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yin Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jun Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenbin Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
5
|
Xue J, Jin S, Zhang H, Zou K, Sheng J, Tang J, Zhao W, Yang P, Tang L, Lv X, Lv L. A simplified non-coplanar volumetric modulated arc therapy for the whole brain radiotherapy with hippocampus avoidance. Front Oncol 2023; 13:1143564. [PMID: 37152035 PMCID: PMC10155751 DOI: 10.3389/fonc.2023.1143564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose To evaluate the feasibility of using a simplified non-coplanar volumetric modulated arc therapy (NC-VMAT) and investigate its dosimetric advantages compared with intensity modulated radiation therapy (IMRT) and coplanar volumetric modulated arc therapy (C-VMAT) for hippocampal-avoidance whole brain radiation therapy (HA-WBRT). Methods Ten patients with brain metastase (BM) were included for HA-WBRT. Three treatment plans were generated for each case using IMRT, C-VMAT, and NC-VMAT, respectively. Results The dosimetric results of the three techniques complied roughly with the RTOG 0933 criteria. After dose normalization, the V30Gy of whole brain planned target volume (WB-PTV) in all the plans was controlled at 95%. Homogeneity index (HI) of WB-PTV was significantly reduced in NC-VMAT (0.249 ± 0.017) over IMRT (0.265 ± 0.020, p=0.005) and C-VMAT (0.261 ± 0.014, p=0.020). In terms of conformity index (CI), NC-VMAT could provide a value of 0.821 ± 0.010, which was significantly superior to IMRT (0.788 ± 0.019, p<0.001). According to D2% of WB-PTV, NC-VMAT could provide a value of 35.62 ± 0.37Gy, significantly superior to IMRT (36.43 ± 0.65Gy, p<0.001). According to D50% of WB-PTV, NC-VMAT can achieve the lowest value of 33.18 ± 0.29Gy, significantly different from IMRT (33.47 ± 0.43, p=0.034) and C-VMAT (33.58 ± 0.37, p=0.006). Regarding D2%, D98%, and Dmean of hippocampus, NC-VMAT could control them at 15.57 ± 0.18Gy, 8.37 ± 0.26Gy and 11.71 ± 0.48Gy, respectively. D2% and Dmean of hippocampus for NC-VMAT was significantly lower than IMRT (D2%: 16.07 ± 0.29Gy, p=0.001 Dmean: 12.18 ± 0.33Gy, p<0.001) and C-VMAT (D2%: 15.92 ± 0.37Gy, p=0.009 Dmean: 12.21 ± 0.54Gy, p<0.001). For other organs-at-risk (OARs), according to D2% of the right optic nerves and the right lenses, NC-VMAT had the lowest values of 31.86 ± 1.11Gy and 7.15 ± 0.31Gy, respectively, which were statistically different from the other two techniques. For other organs including eyes and optic chiasm, NC-VMAT could achieve the lowest doses, different from IMRT statistically. Conclusion The dosimetry of the three techniques for HA-WBRT could roughly comply with the proposals from RTOG 0933. After dose normalization (D95%=30Gy), NC-VMAT could significantly improve dose homogeneity and reduce the D50% in the brain. Besides, it can reduce the D2% of the hippocampus, optic nerves, and lens. With this approach, an efficient and straightforward plan was accomplished.
Collapse
Affiliation(s)
- Juan Xue
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Sunian Jin
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hongtao Zhang
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Kun Zou
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Junxiu Sheng
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Jinhai Tang
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Wanying Zhao
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Yang
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Lufan Tang
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xiupeng Lv
- The Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Xiupeng Lv, ; Li Lv,
| | - Li Lv
- The Department of Pathology, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Xiupeng Lv, ; Li Lv,
| |
Collapse
|
6
|
Ji T, Sun L, Cai F, Li G. Comparison between flattening filter-free (FFF) and flattened photon beam VMAT plans for the whole brain radiotherapy (WBRT) with hippocampus sparing. Asia Pac J Clin Oncol 2021; 18:e263-e267. [PMID: 34333848 PMCID: PMC9540553 DOI: 10.1111/ajco.13624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
Purpose To evaluate and investigate the feasibility of flattening filter‐free (FFF) beam for the whole‐brain radiotherapy (WBRT) with hippocampus sparing. Methods Eighteen patients with volumetric‐modulated arc therapy (VMAT) plans in FFF and conventional beam modes were included in this study. The prescribed dose was 30 Gy in 10 fractions. The conformity index (CI), heterogeneity index reported by TPS (HI‐M), and homogeneity index (HI) for planning target volume (PTV) were evaluated. Subsequently, the following parameters for PTV were calculated and compared: D2%, D98%; the mean dose, maximum dose, and minimal dose for OARs. Plan modulation index, total MUs, and the gamma index were used to evaluate the plan quality. Results HI‐M results were similar for the two techniques (1.239 vs. 1.247, respectively, p = 0.048); FFF beam plans yielded lower D2% compared to FF beam plans (3,416.3 cGy vs. 3,437.2 cGy, p = 0.22), mean dose (3,177.5 cGy vs. 3,195.2 cGy, p = 0.009), and CI (0.884 vs. 0.876, p = 0.001) for PTV. Significant differences were observed between the two beam modes (FF model vs. FFF model) for the maximum dose (1,612.9 cGy vs. 1,470.2 cGy, respectively, p < 0.001), minimum dose (987.6 cGy vs. 898.8 cGy, respectively, p < 0.001), and the mean dose (1144.4 cGy vs. 1047.3 cGy, respectively, p < 0.001) to the hippocampus, and the maximum dose to the eyes (2,792.6 cGy vs. 2,751.3 cGy, respectively, p < 0.001). The average total MUs for FFF‐VMAT plans was significantly greater than FF‐VMAT plans. However, differences for the plan modulation index and the gamma index were negligible. Conclusion In comparison with FF beam, the FFF beam mode offers a clear benefit with respect to WBRT with hippocampal sparing.
Collapse
Affiliation(s)
- Tianlong Ji
- Department of Radiation oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lu Sun
- Department of Radiation oncology, The First Hospital of China Medical University, Shenyang, China
| | - Feng Cai
- Department of Radiation oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Abraham AG, Roa W. Hippocampal avoidance in prophylactic cranial irradiation for small cell lung cancer: benefits and pitfalls. J Thorac Dis 2021; 13:3235-3245. [PMID: 34164216 PMCID: PMC8182537 DOI: 10.21037/jtd-2019-rbmlc-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Small cell lung cancers (SCLC) are a group of cancers that are clinically and pathologically different from other lung cancers. They are associated with high recurrence rates and mortality, and many patients present with metastatic disease. Approximately ten percent of SCLC patients have brain metastases at time of diagnosis, and the cumulative incidence of brain metastases increases to more than fifty percent at two years, even with optimal treatment. Hence, in patients without brain metastases at presentation, prophylactic cranial irradiation (PCI) is an important component of treatment along with systemic chemotherapy and radiotherapy. The goal of PCI is to decrease the incidence of subsequent symptomatic brain metastases in patients who show an initial response to the systemic treatment. Various clinical trials have evaluated the utility of PCI and found substantial benefit. Unfortunately, the long-term toxicity associated with PCI, namely the neuro-cognitive impairment that may develop in patients as a result of the radiation toxicity to the hippocampal areas of the brain, has raised concern both for patients and their treating physicians. Various techniques have been tried to ameliorate the neuro-cognitive impairment associated with PCI, including pharmacological agents and highly conformal hippocampal avoidance radiation. All of these have shown promise, but there is a lack of clarity about the optimal way forward. Hippocampal avoidance PCI appears to be an excellent option and a number of groups are currently evaluating this technique. Although there is clear benefit with this specialized radiation treatment, there are also concerns about the risk of disease recurrence in the undertreated hippocampal areas. This review attempts to compile the available data regarding the benefits and pitfalls associated with hippocampal avoidance PCI in the setting of SCLC.
Collapse
Affiliation(s)
| | - Wilson Roa
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Canada
| |
Collapse
|
8
|
Sawada M, Kunieda E, Akiba T, Kabuki S, Nagao R, Fukuzawa T, Matsumoto Y, Shigematsu N. Dosimetric study of whole-brain irradiation with high-energy photon beams for dose reduction to the scalp. Br J Radiol 2020; 93:20200159. [PMID: 32650647 PMCID: PMC7548379 DOI: 10.1259/bjr.20200159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the efficiency of high-energy photons for mitigating alopecia due to whole-brain irradiation (WBRT). METHODS Planning CT data from 10 patients who received WBRT were collected. We prepared 4 WBRT plans that used 6 or 15 MV photon beams, with or without use of a field-in-field (FiF) technique, and compared outcomes using a treatment planning system. The primary outcome was dose parameters to the scalp, including the mean dose, maximum dose, and dose received to 50% scalp(D50%). Secondary outcomes were minimum dose to the brain surface. RESULTS Using FiF, the mean doses were 24.4-26.0 and 22.4-24.1 Gy, and the maximum doses were 30.5-32.1 and 28.5-30.8 Gy for 6 and 15 MV photon beams, respectively. Without FiF, the mean doses were 24.6-26.9 and 22.6-24.5 Gy, and the maximum doses were 30.8-34.6 and 28.6-32.4 Gy for 6 and 15 MV photon beams. The 15 MV plan resulted in a lower scalp dose for each dose parameter (p < 0.001). Using FiF, the minimum doses to the brain surface for the 6 and 15 MV plans were 28.9 ± 0.440 and 29.0 ± 0.557 Gy, respectively (p = 0.70). Without FiF, the minimum doses to the brain surface for the 6 and 15 MV plans were 28.9 ± 0.456 and 29.0 ± 0.529, respectively (p = 0.66). CONCLUSION Compared with the 6 MV plan, the 15 MV plan achieved a lower scalp dose without impairing the brain surface dose. ADVANCES IN KNOWLEDGE High-energy photon WBRT may mitigate alopecia of patients who receiving WBRT.
Collapse
Affiliation(s)
| | | | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shigeto Kabuki
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ryuta Nagao
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tsuyoshi Fukuzawa
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshitsugu Matsumoto
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoyuki Shigematsu
- Department of Radiation Oncology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
9
|
Lee G, Besse L, Lamba N, Hancox C, Usta I, Hacker F, Catalano P, Brown PD, Tanguturi S, Pashtan I, Phillips J, Haas-Kogan D, Alexander B, Cagney D, Aizer A. Feasibility of hippocampal avoidance whole brain radiation in patients with hippocampal involvement: Data from a prospective study. Med Dosim 2020; 46:21-28. [PMID: 32778521 DOI: 10.1016/j.meddos.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Among patients with brain metastases, hippocampal avoidance whole brain radiation (HA-WBRT) preserves neurocognitive function relative to conventional WBRT but the feasibility of hippocampal sparing in patients with metastases in/near the hippocampus is unknown. We identified the incidence of hippocampal/perihippocampal metastases and evaluated the feasibility of HA-WBRT in such patients. MATERIALS/METHODS Dosimetric data from 34 patients randomized to HA-WBRT (30 Gy/10 fractions) in a phase III trial (NCT03075072) comparing HA-WBRT to stereotactic radiation in patients with 5 to 20 brain metastases were analyzed. Patients with metastases in/near the hippocampi received HA-WBRT with prioritization of tumor coverage over hippocampal avoidance. Target coverage and hippocampal sparing metrics were compared between patients with targets in/near the hippocampus versus not. RESULTS In total, 9 of 34 (26%) patients had targets in the hippocampus and an additional 5 of 34 (15%) patients had targets in the hippocampal avoidance zone (HAZ, hippocampus plus 5 mm expansion) but outside the hippocampus. Patients with targets within the hippocampus and those with targets in the HAZ but outside the hippocampus were spared 34% and 73% of the ipsilateral mean biologically equivalent prescription dose, respectively. Of the latter cohort, 88% and 25% met conventional hippocampal sparing metrics of Dmin ≤ 9 Gy and Dmax ≤ 16 Gy, respectively. Among 11 patients with unilateral hippocampal/perihippocampal involvement, the uninvolved/contralateral hippocampus was limited to Dmin ≤ 9 Gy and Dmax ≤ 17 Gy in all cases. CONCLUSIONS In this study, a substantial percentage of patients with 5 to 20 brain metastases harbored metastases in/near the hippocampus. In such cases, minimizing hippocampal dose while providing tumor coverage was feasible and may translate to neurocognitive protection.
Collapse
Affiliation(s)
- Grace Lee
- Harvard Medical School, Boston, MA 02115, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Luke Besse
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Cindy Hancox
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Iquan Usta
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Fred Hacker
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Paul Catalano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Shyam Tanguturi
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Itai Pashtan
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John Phillips
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Brian Alexander
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Daniel Cagney
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Ayal Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Lin Y, Chen P, Shueng P, Lin H, Lai L. Evaluation of various head flexion angles in hippocampal-avoidance whole-brain radiotherapy using volumetric modulated arc therapy. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
11
|
Scoccianti S, Simontacchi G, Greto D, Perna M, Terziani F, Talamonti C, Teriaca MA, Caramia G, Lo Russo M, Olmetto E, Delli Paoli C, Grassi R, Carfora V, Saieva C, Bonomo P, Detti B, Mangoni M, Desideri I, Francolini G, Di Cataldo V, Marrazzo L, Pallotta S, Livi L. Dosimetric Predictors of Acute and Chronic Alopecia in Primary Brain Cancer Patients Treated With Volumetric Modulated Arc Therapy. Front Oncol 2020; 10:467. [PMID: 32322558 PMCID: PMC7156544 DOI: 10.3389/fonc.2020.00467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose: To determine dose constraints that correlate with alopecia in patients treated with photon-based Volumetric Modulated Arc Therapy (VMAT) for primary brain tumors. Methods: During the treatment planning process, the scalp was drawn as a region of interest. Dose received by 0.1 cc (D0.1cc), mean dose (Dmean), absolute volumes receiving different doses (V16Gy, V20Gy, V25Gy, V30Gy, V35Gy, V40Gy, and V43Gy) were registered for the scalp. Alopecia was assessed according to Common Terminology Criteria for Adverse Events (CTCAE) v4.0. Receiver operating characteristics (ROC) curve analysis was used to identify parameters associated with hair-loss. Results: One-hundred and one patients were included in this observational study. At the end of radiotherapy (RT), 5 patients did not develop alopecia (Dmean scalp 3.1 Gy). The scalp of the patients with G1 (n = 11) and G2 (n = 85) alopecia received Dmean of 10.6 Gy and 11.8 Gy, respectively. At ROC analysis, V16Gy20Gy ≥ 5.2 cc were the strongest predictors of acute alopecia risk. Chronic hair-loss assessment was available for 74 patients: median time to recovery from G2 alopecia was 5, 9 months. The actuarial rate of hair regrowth was 98.1% at 18 months after the end of RT. At ROC analysis, V40Gy43Gy ≥2.2 cc were the strongest predictors of chronic G2-alopecia risk. V20Gy, V40Gy, and D0,1cc were shown to be independent variables according to correlation coefficient r. Conclusions: V20Gy and V40Gy were the strongest predictors for acute and chronic G2 hair-loss, respectively. The low-dose bath typical of VMAT corresponds to large areas of acute but transient alopecia. However, the steep dose gradient of VMAT allows to reduce the areas of the scalp that receive higher doses, minimizing the risk of permanent alopecia. The application of our dosimetric findings for the scalp may help in reducing the alopecia risk and also in estimating the probability of hair-loss during patient counseling before starting radiotherapy.
Collapse
Affiliation(s)
- Silvia Scoccianti
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Gabriele Simontacchi
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Marco Perna
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesca Terziani
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Cinzia Talamonti
- Medical Physics Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Maria Ausilia Teriaca
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Giorgio Caramia
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Monica Lo Russo
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Emanuela Olmetto
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Camilla Delli Paoli
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Roberta Grassi
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Vincenzo Carfora
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Calogero Saieva
- SC Epidemiology of Risk Factors and Lifestyles, Institute for Study, Prevention, and Oncology Network (ISPRO), Florence, Italy
| | - Pierluigi Bonomo
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Beatrice Detti
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Monica Mangoni
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Vanessa Di Cataldo
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Livia Marrazzo
- Medical Physics Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Pallotta
- Medical Physics Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Yuen AHL, Wu PM, Li AKL, Mak PCY. Volumetric modulated arc therapy (VMAT) for hippocampal-avoidance whole brain radiation therapy: planning comparison with Dual-arc and Split-arc partial-field techniques. Radiat Oncol 2020; 15:42. [PMID: 32070385 PMCID: PMC7027102 DOI: 10.1186/s13014-020-01488-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although whole brain radiation therapy (WBRT) provides palliation and prophylaxis, reduces local recurrence probability and improves overall survival, it is evident that WBRT is associated with neurocognitive deficits due to radiation induced damage of the hippocampus. Therefore, minimizing hippocampal dose to the least possible level is of high clinical relevance. In dual-arc conventional volumetric modulated arc therapy (dac-VMAT), the large irradiation field for whole brain planned target volume (PTV) requires a wide jaw opening in which substantial low dose volume to the hippocampus may be produced due to suboptimal multi-leaf collimator (MLC) movements. The present study investigates the potential of a radiation therapy technique with split-arc and reduced field size, namely split-arc partial-field volumetric modulated arc therapy (sapf-VMAT) to spare the hippocampus during WBRT. METHODS Computed tomography and magnetic resonance images of 20 patients with brain metastases were retrieved in this retrospective planning study. The hippocampus was manually delineated by single radiation oncologist strictly following the RTOG 0933 atlas definition. Plans delivering 30 Gy in 10 fractions were generated for each patient using dac-VMAT and sapf-VMAT. Dosimetric parameters from both techniques were compared by paired t-test. RESULTS The results demonstrated that radiation dose to the hippocampus was significantly reduced using sapf-VMAT relative to dac-VMAT plans. sapf-VMAT (7.86Gy, p = 0.001) had significantly lowered average D100% compared to dac-VMAT (9.23 Gy). Decrease in hippocampus Dmax using sapf-VMAT (13.23 Gy, p = 0.001) was statistically significant when compared to dac-VMAT (16.33 Gy). The resulting mean dose to the hippocampus was 9.16 Gy for the for sapf-VMAT. Mean dose of sapf-VMAT was significantly lower than dac-VMAT (10.85 Gy, p < 0.05). In both eyes, sapf-VMAT demonstrated significantly lower Dmean compared to dac-VMAT (p < 0.05). Whole brain PTV coverage was not compromised in both techniques. CONCLUSION sapf-VMAT has demonstrated significant dose reduction to the hippocampus and both eyes compared to dac-VMAT.
Collapse
Affiliation(s)
- Adams Hei Long Yuen
- Department of Diagnostic Radiology and Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Oncology Centre, St. Teresa's Hospital, 327 Prince Edward Road, Hong Kong Special Administrative Region, China.
| | - Po Man Wu
- Department of Diagnostic Radiology and Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Alex Kai Leung Li
- Oncology Centre, St. Teresa's Hospital, 327 Prince Edward Road, Hong Kong Special Administrative Region, China
| | - Philip Chung Yin Mak
- Oncology Centre, St. Teresa's Hospital, 327 Prince Edward Road, Hong Kong Special Administrative Region, China
| |
Collapse
|
13
|
Darázs B, Ruskó L, Végváry Z, Ferenczi L, Dobi Á, Paczona V, Varga Z, Fodor E, Hideghéty K. Subventricular zone volumetric and dosimetric changes during postoperative brain tumor irradiation and its impact on overall survival. Phys Med 2019; 68:35-40. [PMID: 31733404 DOI: 10.1016/j.ejmp.2019.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this retrospective study was to investigate the relationship between the dose to the subventricular zone (SVZ) and overall survival (OS) of 41 patients with glioblastoma multiforme (GBM), who were treated with an adaptive approach involving repeated topometric CT and replanning at two-thirds (40 Gy) of their course of postoperative radiotherapy for planning of a 20 Gy boost. METHODS We examined changes in the ipsilateral lateral ventricle (LV) and SVZ (iLV and iSVZ), as well as in the contralateral LV and SVZ (cLV and cSVZ). We evaluated the volumetric changes on both planning CT scans (primary CT1 and secondary CT2). The survival of the GBM patients was analyzed using the Kaplan-Meier method; the multivariate Cox regression was also performed. RESULTS Median follow-up and OS were 34.5 months and 17.6 months, respectively. LV and SVZ structures exhibited significant volumetric changes on CT2, resulting in an increase of dose coverage. At a cut-off point of 58 Gy, a significant correlation was detected between the iSVZ2 mean dose and OS (27.8 vs 15.6 months, p = 0.048). In a multivariate analysis, GBM patients with a shorter time to postoperative chemoradiotherapy (<3.8 weeks), with good performance status (≥70%) and higher mean dose (≥58 Gy) to the iSVZ2 had significantly better OS. CONCLUSIONS Significant anatomical and dose distribution changes to the brain structures were observed, which have a relevant impact on the dose-effect relationship for GBM; therefore, involving the iSVZ in the target volume should be considered and adapted to the changes.
Collapse
Affiliation(s)
- Barbara Darázs
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - László Ruskó
- General Electric Healthcare Company, Budapest, Bence u. 3, Zip Code: 1131, Hungary.
| | - Zoltán Végváry
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Lehel Ferenczi
- General Electric Healthcare Company, Budapest, Bence u. 3, Zip Code: 1131, Hungary.
| | - Ágnes Dobi
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Viktor Paczona
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Emese Fodor
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| |
Collapse
|
14
|
Ding X, Zhou J, Li X, Blas K, Liu G, Wang Y, Qin A, Chinnaiyan P, Yan D, Stevens C, Grills I, Kabolizadeh P. Improving dosimetric outcome for hippocampus and cochlea sparing whole brain radiotherapy using spot-scanning proton arc therapy. Acta Oncol 2019; 58:483-490. [PMID: 30632851 DOI: 10.1080/0284186x.2018.1555374] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This feasibility study shows that Spot-scanning Proton Arc therapy (SPArc) is able to significantly reduce the dose to the hippocampus and cochlea compared to both Volumetric Modulated Arc Photon Therapy (VMAT) and the robust optimized Intensity Modulated Proton Therapy (ro-IMPT) plans in whole brain radiotherapy. Furthermore, SPArc not only improves plan robustness but could potentially deliver a treatment as efficient as ro-IMPT when proton system's energy layer switch time is less than 1 s.
Collapse
Affiliation(s)
- Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Kevin Blas
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Yinan Wang
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| |
Collapse
|
15
|
Jiang A, Sun W, Zhao F, Wu Z, Shang D, Yu Q, Wang S, Zhu J, Yang F, Yuan S. Dosimetric evaluation of four whole brain radiation therapy approaches with hippocampus and inner ear avoidance and simultaneous integrated boost for limited brain metastases. Radiat Oncol 2019; 14:46. [PMID: 30876444 PMCID: PMC6419811 DOI: 10.1186/s13014-019-1255-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 01/31/2023] Open
Abstract
AIMS To perform a dosimetric evaluation of four different simultaneous integrated boost whole brain radiotherapy modalities with hippocampus and inner ear avoidance in the treatment of limited brain metastases. METHODS Computed tomography/magnetic resonance imaging data of 10 patients with limited (1-5) brain metastases were used to replan step-and-shoot intensity-modulated radiotherapy (sIMRT), dynamic intensity-modulated radiation therapy (dIMRT), volumetric-modulated arc therapy (VMAT), and helical tomotherapy (Tomo). The prescribed doses of 40-50 Gy in 10 fractions and 30 Gy in 10 fractions were simultaneously delivered to the metastatic lesions and the whole-brain volume, respectively. The hippocampal dose met the RTOG 0933 criteria for hippocampal avoidance (Dmax ≤17 Gy, D100% ≤10 Gy). The inner ear dose was restrained to Dmean ≤15 Gy. Target coverage (TC), homogeneity index (HI), conformity index (CI), maximum dose (Dmax), minimum dose (Dmin) and dose to organs at risk (OARs) were compared. RESULTS All plans met the indicated dose restrictions. The mean percentage of planning target volume of metastases (PTVmets) coverage ranged from 97.1 to 99.4%. For planning target volume of brain (PTVbrain), Tomo provided the lowest average D2% (37.5 ± 2.8 Gy), the highest average D98% (25.2 ± 2.0 Gy), and the best TC (92.6% ± 2.1%) and CI (0.79 ± 0.06). The two fixed gantry IMRT modalities (step and shot, dynamic) provided similar PTVbrain dose homogeneity (both 0.76). Significant differences across the four approaches were observed for the maximum and minimum doses to the hippocampus and the maximum doses to the eyes, lens and optic nerves. CONCLUSION All four radiotherapy modalities produced acceptable treatment plans with good avoidance of the hippocampus and inner ear. Tomo obtained satisfactory PTVbrain coverage and the best homogeneity index. TRIAL REGISTRATION Clinicaltrials.gov, NCT03414944 . Registered 29 January 2018.
Collapse
Affiliation(s)
- Aijun Jiang
- Shandong University, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Weipeng Sun
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Zhenxuan Wu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Dongping Shang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Qingxi Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Suzhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jian Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Fengchang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
16
|
Martinage G, Hong AM, Fay M, Thachil T, Roos D, Williams N, Lo S, Fogarty G. Quality assurance analysis of hippocampal avoidance in a melanoma whole brain radiotherapy randomized trial shows good compliance. Radiat Oncol 2018; 13:132. [PMID: 30029684 PMCID: PMC6053726 DOI: 10.1186/s13014-018-1077-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) often cause morbidity and mortality for stage IV melanoma patients. An ongoing randomised phase III trial (NCT01503827 - WBRT-Mel) evaluates the role of adjuvant whole brain radiotherapy (WBRT) following local treatment of MBM. Hippocampal avoidance during WBRT (HA-WBRT) has shown memory and neurocognitive function (NCF) preservation in the RTOG-0933 phase II study. This study assessed the quality assurance of HA-WBRT within the WBRT-Mel trial according to RTOG-0933 study criteria. METHODS Hippocampal avoidance was allowed in approved centres with intensity-modulated radiotherapy capability. Patients treated by HA-WBRT were not randomized within the WBRT arm. The RTOG 0933 contouring Atlas was used to contour hippocampi. In the trial co-ordinating centre, patients were treated with volumetric modulated arc therapy using complementary arcs; similar techniques were used at other sites. Dosimetric data were extracted retrospectively and analysed in accordance with RTOG 0933 study constraints criteria. RESULTS Among the 215 patients accrued to the WBRT-Mel study between April 2009 and September 2017, 107 were randomized to the WBRT arm, 22 were treated by HA-WBRT in 4 centers. Eighteen patients were treated in the same centre. The median age was 65 years. The commonest (91%) HA-WBRT schema was 30 Gy in 10 fractions. Prior to HA-WBRT, 10 patients had been treated by surgery alone, six by radiosurgery alone, four by surgery and radiosurgery and two exclusively by simultaneous integrated boost concurrent to HA-WBRT. Twenty patients were treated with intention to spare both hippocampi and two patients had MBM close to one hippocampus and were treated with intention to spare the contralateral hippocampus. According to RTOG-0933 study criteria, 18 patients (82%) were treated within constraints and four patients (18%) had unacceptable deviation in just one hippocampus. CONCLUSIONS This dosimetric quality assurance study shows good compliance (82%) according to RTOG-0933 study dosimetric constraints. Indeed, all patients respected RTOG hippocampal avoidance constraints on at least one hippocampus. In the futureanalysis of the WBRT-Mel trial, the NCF of patients on the observation arm, WBRT arm and with HA-WBRT arm will be compared.
Collapse
Affiliation(s)
- Geoffrey Martinage
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Centre Oscar-Lambret, Lille, France
- Mater Hospital, NSW, North Sydney, Australia
| | - Angela M Hong
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Mater Hospital, NSW, North Sydney, Australia
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Mike Fay
- School of Medicine and Public Health, University of Newcastle, NSW, Callaghan, Australia
- GenesisCare, Radiation Oncology, NSW, Newcastle, Australia
| | - Thanuja Thachil
- Northern Territory Radiation Oncology, Alan Walker Cancer Care Centre, NT, Darwin, Australia
| | - Daniel Roos
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- University of Adelaide, South Australia, Adelaide, Australia
| | - Narelle Williams
- Australia and New Zealand Melanoma Trials Group, NSW, North Sydney, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Gerald Fogarty
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia.
- Mater Hospital, NSW, North Sydney, Australia.
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia.
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
17
|
Jacob J, Durand T, Feuvret L, Mazeron JJ, Delattre JY, Hoang-Xuan K, Psimaras D, Douzane H, Ribeiro M, Capelle L, Carpentier A, Ricard D, Maingon P. Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother Oncol 2018; 128:221-228. [PMID: 30041961 DOI: 10.1016/j.radonc.2018.05.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022]
Abstract
Life expectancy of patients treated for brain tumors has lengthened due to the therapeutic improvements. Cognitive impairment has been described following brain radiotherapy, but the mechanisms leading to this adverse event remain mostly unknown. Technical evolutions aim at enhancing the therapeutic ratio. Sparing of the healthy tissues has been improved using various approaches; however, few dose constraints have been established regarding brain structures associated with cognitive functions. The aims of this literature review are to report the main brain areas involved in cognitive adverse effects induced by radiotherapy as described in literature, to better understand brain radiosensitivity and to describe potential future improvements.
Collapse
Affiliation(s)
- Julian Jacob
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France; Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France.
| | - Thomas Durand
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Loïc Feuvret
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| | - Jean-Jacques Mazeron
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| | - Jean-Yves Delattre
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Khê Hoang-Xuan
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Dimitri Psimaras
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Hassen Douzane
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Monica Ribeiro
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Laurent Capelle
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurosurgery, France
| | - Alexandre Carpentier
- Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurosurgery, France
| | - Damien Ricard
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Service de Santé des Armées, Hôpital d'Instruction des Armées Percy, Department of Neurology, Clamart, France; Service de Santé des Armées, Ecole du Val-de-Grâce, Paris, France
| | - Philippe Maingon
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| |
Collapse
|
18
|
Zhang K, Dai J, Hu Z, Niu C. Dosimetric impact of hysteresis on lung cancer tomotherapy: A moving phantom study. Phys Med 2018; 49:40-46. [DOI: 10.1016/j.ejmp.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
|
19
|
Daniela Falco M, Giancaterino S, D'Andrea M, Gimenez De Lorenzo R, Trignani M, Caravatta L, Di Carlo C, Di Biase S, Allajbej A, Genovesi D. Hippocampal sparing approach in fractionated stereotactic brain VMAT radio therapy: A retrospective feasibility analysis. J Appl Clin Med Phys 2017; 19:86-93. [PMID: 29125239 PMCID: PMC5768008 DOI: 10.1002/acm2.12216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/13/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022] Open
Abstract
Volumetric Modulated Arc Therapy (VMAT) techniques for fractioned stereotactic brain radiotherapy (FSBRT) can achieve highly conformal dose distribution to intracranial lesions. However, they can potentially increase the dose to hippocampus (H) causing neurocognitive toxicity during the first four months after irradiation. The purpose of this study was to assess the feasibility of hippocampal‐sparing (HS) treatment plans in 22 patients with brain metastasis treated with VMAT technique. Firstly, we retrospectively analyzed hippocampal doses in all 22 VMAT original (not hippocampal‐sparing, NHS) plans. Plans with hippocampal dose exceeding constraints (9 out of 22) were re‐planned considering dose constraints on the hippocampus (H) and on hippocampal avoidance zone (HAZ) generated using 5 mm isotropic margin to the hippocampus. Conformity (CI) and homogeneity indexes (HI) on the target and MUs, were maintained as close as possible to the original plans. Mean CINHS and CIHS obtained were: 0.79 ± 0.11 and 0.81 ± 0.10, respectively (P = 0.75); mean HINHS and HIHS were 1.05 ± 0.02 and 1.04 ± 0.01 respectively (P = 0.72). In both sets of plans, the mean MU values were similar: 1033 ± 275 and 1022 ± 234 for NHS and HS respectively. In HS plans, the mean hippocampal dose was decreased by an average of 35%. After replanning, the Dmax (21.3 Gy) for HAZ and H was met by 45% (4/9) and 78% (7/9) of the NHS plans, respectively. The worst results were obtained for cases with target volumes extention closer than 12 mm to H, because of the difficulty to spare hippocampus without compromising target coverage. After replanning D40% constraint value (7.3 Gy) was met by all the 9 NHS plans. In conclusion, this study suggests that an hippocampal‐sparing approach to FSBRT is feasible resulting in a decrease in the dose to the hippocampus without any loss in conformity or increase in treatment time.
Collapse
Affiliation(s)
- Maria Daniela Falco
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Stefano Giancaterino
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, National Cancer Center Institute Regina Elena, Rome, Italy
| | - Ramon Gimenez De Lorenzo
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Marianna Trignani
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Luciana Caravatta
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Clelia Di Carlo
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Saide Di Biase
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Albina Allajbej
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Domenico Genovesi
- Department of Radiation Oncology, "G. D'Annunzio" University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| |
Collapse
|
20
|
Contraintes de dose en radiothérapie conformationnelle fractionnée et en radiothérapie stéréotaxique dans les hippocampes, le tronc cérébral et l’encéphale : limites et perspectives. Cancer Radiother 2017; 21:636-647. [DOI: 10.1016/j.canrad.2017.08.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
|
21
|
Pokhrel D, Sood S, McClinton C, Shen X, Lominska C, Saleh H, Badkul R, Jiang H, Mitchell M, Wang F. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Med Dosim 2016; 41:315-322. [DOI: 10.1016/j.meddos.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/23/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022]
|