1
|
Behmadi M, Toossi MTB, Nasseri S, Ravari ME, Momennezhad M, Gholamhosseinian H, Mohammadi M, Mdletshe S. Calculation of Organ Dose Distribution (in-field and Out-of-field) in Breast Cancer Radiotherapy on RANDO Phantom Using GEANT4 Application for Tomographic Emission (Gate) Monte Carlo Simulation. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:18. [PMID: 39100743 PMCID: PMC11296572 DOI: 10.4103/jmss.jmss_25_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 08/06/2024]
Abstract
Introduction Organ dose distribution calculation in radiotherapy and knowledge about its side effects in cancer etiology is the most concern for medical physicists. Calculation of organ dose distribution for breast cancer treatment plans with Monte Carlo (MC) simulation is the main goal of this study. Materials and Methods Elekta Precise linear accelerator (LINAC) photon mode was simulated and verified using the GEANT4 application for tomographic emission. Eight different radiotherapy treatment plans on RANDO's phantom left breast were produced with the ISOgray treatment planning system (TPS). The simulated plans verified photon dose distribution in clinical tumor volume (CTV) with TPS dose volume histogram (DVH) and gamma index tools. To verify photon dose distribution in out-of-field organs, the point dose measurement results were compared with the same point doses in the MC simulation. Eventually, the DVHs for out-of-field organs that were extracted from the TPS and MC simulation were compared. Results Based on the implementation of gamma index tools with 2%/2 mm criteria, the simulated LINAC output demonstrated high agreement with the experimental measurements. Plan simulation for in-field and out-of-field organs had an acceptable agreement with TPS and experimental measurement, respectively. There was a difference between DVHs extracted from the TPS and MC simulation for out-of-field organs in low-dose parts. This difference is due to the inability of the TPS to calculate dose distribution in out-of-field organs. Conclusion and Discussion Based on the results, it was concluded that the treatment plans with the MC simulation have a high accuracy for the calculation of out-of-field dose distribution and could play a significant role in evaluating the important role of dose distribution for second primary cancer estimation.
Collapse
Affiliation(s)
- Marziyeh Behmadi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Nasseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ehsan Ravari
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Momennezhad
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mohammadi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Sibusiso Mdletshe
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Tahmasbi M, Capela M, Santos T, Mateus J, Ventura T, do Carmo Lopes M. Particular issues to be considered in small field dosimetry for TrueBeam STx commissioning. Appl Radiat Isot 2023; 202:111066. [PMID: 37865066 DOI: 10.1016/j.apradiso.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.
Collapse
Affiliation(s)
- Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal.
| | - Miguel Capela
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tania Santos
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Josefina Mateus
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tiago Ventura
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Maria do Carmo Lopes
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| |
Collapse
|
3
|
Dosimetric accuracy of Acuros ® XB and AAA algorithms for stereotactic body radiotherapy (SBRT) lung treatments: evaluation with PRIMO Monte Carlo code. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Purpose:
The study aimed to compare the dosimetric performance of Acuros® XB (AXB) and anisotropic analytical algorithm (AAA) for lung SBRT plans using Monte Carlo (MC) simulations.
Methods:
We compared the dose calculation algorithms AAA and either of the dose reporting modes of AXB (dose to medium (AXB-Dm) or dose to water (AXB-Dw)) algorithms implemented in Eclipse® (Varian Medical Systems, Palo Alto, CA) Treatment planning system (TPS) with MC. PRIMO code was used for the MC simulations. The TPS-calculated dose profiles obtained with a multi-slab heterogeneity phantom were compared to MC. A lung phantom with a tumour was used to validate TPS algorithms using different beam delivery techniques. 2D gamma values obtained from Gafchromic film measurements in the tumour isocentre plane were compared with TPS algorithms and MC. Ten VMAT SBRT plans generated in TPS with each algorithm were recalculated with a PRIMO MC system for identical beam parameters for the clinical plan validation. A dose–volume histogram (DVH) based plan comparison and a 3D global gamma analysis were performed.
Results:
AXB demonstrated better agreement with MC and film measurements in the lung phantom validation, with good agreement in PDD, profiles and gamma analysis. AAA showed an overestimated PDD, a significant difference in dose profiles and a lower gamma pass rate near the field borders. With AAA, there was a dose overestimation at the periphery of the tumour. For clinical plan validation, AXB demonstrated higher agreement with MC than AAA.
Conclusions:
AXB provided better agreement with MC than AAA in the phantom and clinical plan evaluations.
Collapse
|
4
|
Wang L, Zhang J, Huang M, Xu B, Li X. Radiobiological Comparison of Acuros External Beam and Anisotropic Analytical Algorithm on Esophageal Carcinoma Radiotherapy Treatment Plans. Dose Response 2022; 20:15593258221105678. [PMID: 35832770 PMCID: PMC9272482 DOI: 10.1177/15593258221105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The present study aimed to investigate the dose differences and
radiobiological assessment between Anisotropic Analytical Algorithm (AAA)
and Acuros External Beam (AXB) with its 2 calculation models, namely,
dose-to-water (AXB-Dw) and dose-to-medium (AXB-Dm), on esophageal carcinoma
radiotherapy treatment plans. Materials and methods The AXB-Dw and AXB-Dm plans were generated by recalculating the initial 66
AAA plans using the AXB algorithm with the same monitor units and beam
parameters as those in the original plan. The dosimetric and radiobiological
assessment parameters were calculated for the planning target volume (PTV)
and organs at risk (OARs). The gamma agreement for the PTV and the
correlation between it and the volume of the air cavity and bone among the
different algorithms were compared simultaneously. The dose discrepancy
between the theoretical calculation and treatment planning system (TPS) when
switching from AXB-Dm to AXB-Dw was analyzed according to the composition of
the structures. Results The PTV dose of AXB-Dm plans was significantly smaller than that of the AAA
and AXB-Dw plans (P < .05), except for D2. The difference
values for AAA vs AXB-Dm (∆Dx,(AAA-AXB,Dm)) and
AXB-Dw vs AXB-Dm (∆Dx,(AXB,Dw-AXB,Dm)) were
1.94% [1.27%, 2.64%] and 1.95% [1.56%, 2.27%], respectively. For the spinal
cord and heart, there were obvious differences between the AAA vs AXB-Dm
(spinal cord: 1.15%, heart: 2.89%) and AXB-Dw vs AXB-Dm (spinal cord: 1.88%,
heart: 3.25%) plans. For the lung, the differences between AAA vs AXB-Dm and
AAA vs AXB-Dw were significantly larger than those of AXB-Dm vs AXB-Dw.
Compared to the case of AAA and AXB-Dw, the decrease in biologically
effective dose (BED10, αβ=10 ) of AXB-Dm due to dose non-uniformity exceeded 6.5%, even
for a small σ. The average values of equivalent uniform dose in the AAA,
AXB-Dw, and AXB-Dm plans were 52.03±.39 Gy, 52.24 ± .81 Gy, and 51.13 ±
.47 Gy, respectively. The tumor control probability (TCP) results for PTV in
the AAA, AXB-Dw, and AXB-Dm plans were 62.29 ± 1.57%, 62.82 ± 1.69%, and
58.68±1.88%, respectively. With the 2%/2 mm and 3%/3 mm acceptance criteria,
the mean values of ΔγAAAAXB−Dw, ΔγAAAAXB−Dm, and ΔγAXB−DmAXB−Dw were 87.24, 63.3, and 64.81% vs 97.86, 91.77, and 89.25%,
respectively. The dose discrepancy between the theoretical calculation and
TPS when switching from AXB-Dm to AXB-Dw was approximately 1.63%. Conclusions The AAA and AXB-Dw algorithms overestimated the radiobiological parameters
when the tumor particularly consisted of nonuniform tissues. A relatively
small dose difference could cause a significant reduction in the
corresponding TCP. Dose distribution algorithms should be carefully chosen
by physicists and oncologists to improve tumor control, as well as to
optimize OARs protection.
Collapse
Affiliation(s)
- Lin Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Miaoyun Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Kumar L, Bhushan M, Kishore V, Yadav G, Gurjar OP. Dosimetric validation of Acuros® XB algorithm for RapidArc™ treatment technique: A post software upgrade analysis. J Cancer Res Ther 2021; 17:1491-1498. [PMID: 34916383 DOI: 10.4103/jcrt.jcrt_1154_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aim To validate the Acuros® XB (AXB) algorithm in Eclipse treatment planning system (TPS) for RapidArc™ (RA) technique following the software upgrades. Materials and Methods A Clinac-iX (2300CD) linear accelerator and Eclipse TPS (Varian Medical System, Inc., Palo Alto, USA) was used for commissioning of AXB algorithm using a 6 megavolts photon beam. Percentage depth dose (PDD) and profiles for field size 2 cm × 2 cm, 4 cm × 4 cm, 6 cm × 6 cm, 10 cm × 10 cm, 20 cm × 20 cm, 30 cm × 30 cm to 40 cm × 40 cm were taken. AXB calculated PDDs and profiles were evaluated against the measured and analytical anisotropic algorithm (AAA)-calculated PDDs and profiles. Test sites recommended by American Association of Physicists in Medicine task group (AAPM TG)-119 recommendation were used for RA planning and delivery verification using AXB algorithm. Results Dosimetric analysis of AXB calculated data showed that difference between calculated and measured data for PDD curves were maximum <1% beyond the depth of dose maximum and computed profiles in central region matches with maximum <1% for all considered field sizes. Ion-chamber measurements showed that the average confidence limit (CLs) was 0.034 and 0.020 in high-gradient and 0.047 and 0.042 in low-gradient regions, respectively, for AAA and AXB calculated RA plans. Portal measurements show the average CLs were 2.48 and 2.58 for AAA and AXB-calculated RA plans, with gamma passing criteria of 3%/3 mm. Conclusions AXB shows excellent agreement with measurements and AAA calculated data. The CLs were consistent with the baseline values published by TG-119. AXB algorithm has the potential to perform photon dose calculation with comparable fast calculation speed without negotiating the accuracy. AAPM TG-119 was successfully implemented to access the proper configuration of AXB algorithm following the TPS upgrade.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Applied Science and Humanities, Dr. A.P.J Abdul Kalam Technical University, Lucknow, Uttar Pradesh; Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Manindra Bhushan
- Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Vimal Kishore
- Department of Applied Science and Humanities, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Girigesh Yadav
- Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Om Prakash Gurjar
- Department of Radiotherapy, Mahatma Gandhi Memorial Medical College, Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Andersson P, Pettersson N, Lindberg A, Swanpalmer J, Chakarova R. Effects of lung tissue characterization in radiotherapy of breast cancer under deep inspiration breath hold when using Monte Carlo dosimetry. Phys Med 2021; 90:83-90. [PMID: 34563835 DOI: 10.1016/j.ejmp.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the sensitivity of Monte Carlo (MC) calculated lung dose distributions to lung tissue characterization in external beam radiotherapy of breast cancer under Deep Inspiration Breath Hold (DIBH). METHODS EGSnrc based MC software was employed. Mean lung densities for one hundred patients were analysed. CT number frequency and clinical dose distributions were calculated for 15 patients with mean lung density below 0.14 g/cm3. Lung volume with a pre-defined CT numbers was also considered. Lung tissue was characterized by applying different CT calibrations in the low-density region and air-lung tissue thresholds. Dose impact was estimated by Dose Volume Histogram (DVH) parameters. RESULTS Mean lung densities below 0.14 g/cm3 were found in 10% of the patients. CT numbers below -960 HU dominated the CT frequency distributions with a high rate of CT numbers at -990 HU. Mass density conversion approach influenced the DVH shape. V4Gy and V8Gy varied by 7% and 5% for the selected patients and by 9% and 3.5% for the pre-defined lung volume. V16Gy and V20Gy, were within 2.5%. Regions above 20 Gy were affected. Variations in air- lung tissue differentiation resulted in DVH parameters within 1%. Threshold at -990 HU was confirmed by the CT number frequency distributions. CONCLUSIONS Lung dose distributions were more sensitive to variations in the CT calibration curve below lung (inhale) density than to air-lung tissue differentiation. Low dose regions were mostly affected. The dosimetry effects were found to be potentially important to 10% of the patients treated under DIBH.
Collapse
Affiliation(s)
- P Andersson
- Institute of Clinical Sciences, Department of Medical Radiation Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; RISE Research Institutes of Sweden, Materials and Production, Gothenburg, Sweden
| | - N Pettersson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - A Lindberg
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J Swanpalmer
- Institute of Clinical Sciences, Department of Medical Radiation Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - R Chakarova
- Institute of Clinical Sciences, Department of Medical Radiation Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Dosimetric comparison of analytic anisotropic algorithm and Acuros XB algorithm in VMAT plans for high-grade glioma. Phys Med 2020; 73:73-82. [PMID: 32330814 DOI: 10.1016/j.ejmp.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To investigate the dosimetric impact between the anisotropic analytical algorithm (AAA) and the Acuros XB (AXB) algorithm in volumetric-modulated arc therapy (VMAT) plans for high-grade glioma (HGG). METHODS We used a heterogeneous phantom to quantify the agreement between the measured and calculated doses from the AAA and from the AXB. We then analyzed 14 patients with HGG treated by VMAT, using the AAA. We newly created AXB plans for each corresponding AAA plan under the following conditions: (1) re-calculation for the same number of monitor units with an identical beam and leaf setup, and (2) re-optimization under the same conditions of dose constraints. The dose coverage for the planning target volume (PTV) was evaluated by dividing the coverage into the skull, air, and soft-tissue regions. RESULTS Compared to the results obtained with the AAA, the AXB results were in good agreement with the measured profiles. The dose differences in the PTV between the AAA and re-calculated AXB plans were large in the skull region contained in the target. The dose difference in the PTV in both types of plan was significantly correlated with the volume of the skull contained in the target (r = 0.71, p = 0.0042). A re-optimized AXB plan's dose difference was lower vs. the re-calculated AXB plan's. CONCLUSIONS We observed dose differences between the AAA and AXB plans, in particular in the cases in which the skull region of the target was large. Considering the phantom measurement results, the AXB algorithm should be used in VMAT plans for HGG.
Collapse
|
8
|
Lee B, Jeong S, Chung K, Yoon M, Park HC, Han Y, Jung SH. Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator. J Appl Clin Med Phys 2019; 20:101-110. [PMID: 31544350 PMCID: PMC6806485 DOI: 10.1002/acm2.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate the quality of patient‐specific complicated treatment plans, including commercialized treatment planning systems (TPS) and commissioned beam data, we developed a process of quality assurance (QA) using a Monte Carlo (MC) platform. Specifically, we constructed an interface system that automatically converts treatment plan and dose matrix data in digital imaging and communications in medicine to an MC dose‐calculation engine. The clinical feasibility of the system was evaluated. Materials and Methods A dose‐calculation engine based on GATE v8.1 was embedded in our QA system and in a parallel computing system to significantly reduce the computation time. The QA system automatically converts parameters in volumetric‐modulated arc therapy (VMAT) plans to files for dose calculation using GATE. The system then calculates dose maps. Energies of 6 MV, 10 MV, 6 MV flattening filter free (FFF), and 10 MV FFF from a TrueBeam with HD120 were modeled and commissioned. To evaluate the beam models, percentage depth dose (PDD) values, MC calculation profiles, and measured beam data were compared at various depths (Dmax, 5 cm, 10 cm, and 20 cm), field sizes, and energies. To evaluate the feasibility of the QA system for clinical use, doses measured for clinical VMAT plans using films were compared to dose maps calculated using our MC‐based QA system. Results A LINAC QA system was analyzed by PDD and profile according to the secondary collimator and multileaf collimator (MLC). Values for MC calculations and TPS beam data obtained using CC13 ion chamber (IBA Dosimetry, Germany) were consistent within 1.0%. Clinical validation using a gamma index was performed for VMAT treatment plans using a solid water phantom and arbitrary patient data. The gamma evaluation results (with criteria of 3%/3 mm) were 98.1%, 99.1%, 99.2%, and 97.1% for energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF, respectively. Conclusions We constructed an MC‐based QA system for evaluating patient treatment plans and evaluated its feasibility in clinical practice. We observed robust agreement between dose calculations from our QA system and measurements for VMAT plans. Our QA system could be useful in other clinical settings, such as small‐field SRS procedures or analyses of secondary cancer risk, for which dose calculations using TPS are difficult to verify.
Collapse
Affiliation(s)
- Boram Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Seonghoon Jeong
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myonggeun Yoon
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology,, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Hoon Jung
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
9
|
Soh RCX, Tay GH, Lew WS, Lee JCL. A depth dose study between AAA and AXB algorithm against Monte Carlo simulation using AIP CT of a 4D dataset from a moving phantom. Rep Pract Oncol Radiother 2018; 23:413-424. [PMID: 30197577 DOI: 10.1016/j.rpor.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022] Open
Abstract
Aim To identifying depth dose differences between the two versions of the algorithms using AIP CT of a 4D dataset. Background Motion due to respiration may challenge dose prediction of dose calculation algorithms during treatment planning. Materials and methods The two versions of depth dose calculation algorithms, namely, Anisotropic Analytical Algorithm (AAA) version 10.0 (AAAv10.0), AAA version 13.6 (AAAv13.6) and Acuros XB dose calculation (AXB) algorithm version 10.0 (AXBv10.0), AXB version 13.6 (AXBv13.6), were compared against a full MC simulated 6X photon beam using QUASAR respiratory motion phantom with a moving chest wall. To simulate the moving chest wall, a 4 cm thick wax mould was attached to the lung insert of the phantom. Depth doses along the central axis were compared in the anterior and lateral beam direction for field sizes 2 × 2 cm2, 4 × 4 cm2 and 10 × 10 cm2. Results For the lateral beam direction, the moving chest wall highlighted differences of up to 105% for AAAv10.0 and 40% for AXBv10.0 from MC calculations in the surface and buildup doses. AAAv13.6 and AXBv13.6 agrees with MC predictions to within 10% at similar depth. For anterior beam doses, dose differences predicted for both versions of AAA and AXB algorithm were within 7% and results were consistent with static heterogeneous studies. Conclusions The presence of the moving chest wall was capable of identifying depth dose differences between the two versions of the algorithms. These differences could not be identified in the static chest wall as shown in the anterior beam depth dose calculations.
Collapse
Affiliation(s)
- Roger Cai Xiang Soh
- Department of Radiation Oncology, National University Cancer Institute, Singapore.,Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - Guan Heng Tay
- Division of Radiation Oncology, National Cancer Centre, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore.,Division of Radiation Oncology, National Cancer Centre, Singapore
| |
Collapse
|
10
|
Hoffmann L, Alber M, Söhn M, Elstrøm UV. Validation of the Acuros XB dose calculation algorithm versus Monte Carlo for clinical treatment plans. Med Phys 2018; 45:3909-3915. [PMID: 29908062 DOI: 10.1002/mp.13053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The two distinct dose computation paradigms of Boltzmann equation solvers and Monte Carlo simulation both promise in principle maximum accuracy. In practice, clinically acceptable calculation times demand approximations and numerical short-cuts on one hand, and modeling the beam characteristics of a real linear accelerator to the required accuracy on the other. A thorough benchmark of both algorithm types therefore needs to start with beam modeling, and needs to include a number of clinically challenging treatment plans. METHODS The Acuros XB (v 13.7, Varian Medical Systems) and SciMoCa (v 1.0, Scientific RT) algorithms were commissioned for the same Varian Clinac accelerator for beam qualities 6 and 15 MV. Beam models were established with water phantom measurements and MLC calibration protocols. In total, 25 patients of five case classes (lung/three-dimensional (3D) conformal, lung/IMRT, head and neck/VMAT, cervix/IMRT, and rectum/VMAT) were randomly selected from the clinical database and computed with both algorithms. Statistics of 3D gamma analysis for various dose/distance-to-agreement (DTA) criteria and differences in selected DVH parameters were analyzed. RESULTS The percentage of points fulfilling a gamma evaluation was scored as the gamma agreement index (GAI), denoted as G(ΔD, DTA). G(3,3), G(2,2), and G(1,1) were evaluated for the full body, PTV, and selected organs at risk (OARs). For all patients, G(3,3) ≥ 99.9% and G(2,2) > 97% for the body. G(1,1) varied among the patients. However, for all patients, G(1,1) > 70% and G(1,1) > 80% for 68% of the patients. For each patient, the mean dose deviation was ΔD < 1% for the body, PTV, and all evaluated OARs, respectively. In dense bone and at off-axis distance > 10 cm, the Acuros algorithm yielded slightly higher doses. In the first layer of voxels of the patient surface, the calculated doses deviated between the algorithms. However, at the second voxel, good agreement was observed. The differences in D(98%PTV) were <1.9% between the two algorithms and for 76% of the patients, deviations were below 1%. CONCLUSIONS Overall, an outstanding agreement was found between the Boltzmann equation solver and Monte Carlo. High-accuracy dose computation algorithms have matured to a level that their differences are below common experimental detection thresholds for clinical treatment plans. Aside from residual differences which could be traced back to implementation details and fundamental cross-section data, both algorithms arrive at identical dose distributions.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, 8000, Denmark
| | - Markus Alber
- Department of Oncology, Aarhus University Hospital, Aarhus, 8000, Denmark
- Section for Medical Physics, Department of Radiooncology, University Clinic Heidelberg, Heidelberg, 69120, Germany
- Scientific RT GmbH, Munich, 81373, Germany
| | | | | |
Collapse
|
11
|
Xiao J, Li Y, Shi H, Chang T, Luo Y, Wang X, He Y, Chen N. Multi-criteria optimization achieves superior normal tissue sparing in intensity-modulated radiation therapy for oropharyngeal cancer patients. Oral Oncol 2018; 80:74-81. [DOI: 10.1016/j.oraloncology.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
12
|
Chaikh A, Ojala J, Khamphan C, Garcia R, Giraud JY, Thariat J, Balosso J. Dosimetrical and radiobiological approach to manage the dosimetric shift in the transition of dose calculation algorithm in radiation oncology: how to improve high quality treatment and avoid unexpected outcomes? Radiat Oncol 2018; 13:60. [PMID: 29615079 PMCID: PMC5883266 DOI: 10.1186/s13014-018-1005-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/19/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND For a given prescribed dose of radiotherapy, with the successive generations of dose calculation algorithms, more monitor units (MUs) are generally needed. This is due to the implementation of successive improvements in dose calculation: better heterogeneity correction and more accurate estimation of secondary electron transport contribution. More recently, there is the possibility to report the dose-to-medium, physically more accurate compared to the dose-to-water as the reference one. This last point is a recent concern and the main focus of this study. METHODS In this paper, we propose steps for a general analysis procedure to estimate the dosimetric alterations, and the potential clinical changes, between a reference algorithm and a new one. This includes dosimetric parameters, gamma index, radiobiology indices based on equivalent uniform dose concept and statistics with bootstrap simulation. Finally, we provide a general recommendation on the clinical use of new algorithms regarding the dose prescription or dose limits to the organs at risks. RESULTS The dosimetrical and radiobiological data showed a significant effect, which might exceed 5-10%, of the calculation method on the dose the distribution and clinical outcomes for lung cancer patients. Wilcoxon signed rank paired comparisons indicated that the delivered dose in MUs was significantly increased (> 2%) using more advanced dose calculation methods as compared to the reference one. CONCLUSION This paper illustrates and explains the use of dosimetrical, radiobiologcal and statistical tests for dosimetric comparisons in radiotherapy. The change of dose calculation algorithm may induce a dosimetric shift, which has to be evaluated by the physicists and the oncologists. This includes the impact on tumor control and on the risk of toxicity based on normal tissue dose constraints. In fact, the alteration in dose distribution makes it hard to keep exactly the same tumor control probability along with the same normal tissue complication probability.
Collapse
Affiliation(s)
- Abdulhamid Chaikh
- Department of Radiation Oncology and Medical Physics, University Hospital of Grenoble Alpes (CHUGA), Grenoble, France
- France HADRON National Research Infrastructure, IPNL, Lyon, France
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN - UMR6534 - Unicaen - Normandie Université, Caen, France
| | - Jarkko Ojala
- Department of Oncology, Tampere University Hospital (Tays), Tampere, Finland
- Department of Medical Physics, Tampere University Hospital (Tays), Tampere, Finland
| | - Catherine Khamphan
- Department of Medical Physics, Institut Sainte Catherine, Avignon, France
| | - Robin Garcia
- Department of Medical Physics, Institut Sainte Catherine, Avignon, France
| | - Jean Yves Giraud
- Department of Radiation Oncology and Medical Physics, University Hospital of Grenoble Alpes (CHUGA), Grenoble, France
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN - UMR6534 - Unicaen - Normandie Université, Caen, France
- Department of Radiation Oncology, Centre François Baclesse, Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology and Medical Physics, University Hospital of Grenoble Alpes (CHUGA), Grenoble, France
- France HADRON National Research Infrastructure, IPNL, Lyon, France
- Department of Radiation Oncology, Centre François Baclesse, Caen, France
| |
Collapse
|
13
|
Chan M, Wong M, Leung R, Cheung S, Blanck O. Optimizing the prescription isodose level in stereotactic volumetric-modulated arc radiotherapy of lung lesions as a potential for dose de-escalation. Radiat Oncol 2018; 13:24. [PMID: 29426358 PMCID: PMC5807823 DOI: 10.1186/s13014-018-0965-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To derive and exploit the optimal prescription isodose level (PIL) in inverse optimization of volumetric modulated arc radiotherapy (VMAT) as a potential approach to dose de-escalation in stereotactic body radiotherapy for non-small cell lung carcinomas (NSCLC). METHODS For ten patients, inverse Monte Carlo dose optimization was performed to cover 95% PTV by varying prescription isodose lines (PIL) at 60 to 80% and reference 85%. Subsequently, these were re-normalized to the median gross tumor volume dose (GTV-based prescription) to assess the impacts of PTV and normal tissue dose reduction. RESULTS With PTV-based prescription, GTV mean dose was much higher with the optimized PIL at 60% with significant reduction of normal lung receiving 30 to 10 Gy (V 30-10Gy ), and observable but insignificant dose reduction to spinal cord, esophagus, ribs, and others compared with 85% PIL. Mean doses to the normal lung between PTV and GTV was higher with 60-70% PIL than 85%. The dose gradient index was 5.0 ± 1.1 and 6.1 ± 1.4 for 60 and 85% PIL (p < 0.05), respectively. Compared with the reference 85% PIL plan using PTV-base prescription, significant decreases of all normal tissue doses were observed with 60% and 70% PIL by GTV-based prescription. Yet, the resulting biological effective (BED) mean doses of PTV remain sufficiently high, ranging 104.2 to 116.9 Gy α/β = 10. CONCLUSIONS Optimizing the PIL with VMAT has notable advantage of improving the dosimetric quality of lung SBRT and offers the potential of dose de-escalation for surrounding tissues while increasing the GTV dose simultaneously. The clinical implication of re-normalizing plans from PTV-prescription at 60-70% to the GTV median dose requires further investigations.
Collapse
Affiliation(s)
- Mark Chan
- University Medical Center Schleswig–Holstein, Campus Kiel, Department for Radiation Oncology, Arnold–Heller–Straße 3, Haus 50, Karl–Lennert–Krebscentrum Nord, 24105 Kiel, Germany
- Imperial College London Healthcare NHS Trust, Department of Radiation Physics, London, UK
| | - Matthew Wong
- Tuen Mun Hospital, Department of Clinical Oncology, Special Administrative Region of China, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Ronnie Leung
- Tuen Mun Hospital, Department of Clinical Oncology, Special Administrative Region of China, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Steven Cheung
- Tuen Mun Hospital, Department of Clinical Oncology, Special Administrative Region of China, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Oliver Blanck
- University Medical Center Schleswig–Holstein, Campus Kiel, Department for Radiation Oncology, Arnold–Heller–Straße 3, Haus 50, Karl–Lennert–Krebscentrum Nord, 24105 Kiel, Germany
- Saphir Radiosurgery Center Northern Germany, Güstrow, Germany
| |
Collapse
|
14
|
Mohandass P, Khanna D, Manigandan D, Bhalla NK, Puri A. Validation of a Software Upgrade in a Monte Carlo Treatment Planning System by Comparison of Plans in Different Versions. J Med Phys 2018; 43:93-99. [PMID: 29962686 PMCID: PMC6020620 DOI: 10.4103/jmp.jmp_7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Validation of a new software version of a Monte Carlo treatment planning system through comparing plans generated by two software versions in volumetric-modulated arc therapy (VMAT) for lung cancer. MATERIALS AND METHODS Three patients who were treated with 60 Gy/30 fractions in Elekta Synergy™ linear accelerator by VMAT technique with 2% statistical uncertainty (SU) were chosen for the study. Multiple VMAT plans were generated using two different software versions of Monaco treatment planning system TPS (V5.10.02 and V5.11). By keeping all other parameters constant, originally accepted plans were recalculated for the SUs of 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, the metrics compared were conformity Index (CI), homogeneity Index (HI), dose coverage to planning target volume (PTV), organ at risk (OAR) doses to spinal cord, pericardium, bilateral lungs-PTV, esophagus, liver, normal tissue integral dose (NTID), volumes receiving dose >5 and >10 Gy, calculation time (tCT), and gamma pass rates. RESULTS In both versions, CI and HI improved as the SU increased from 0.5% to 5%. No significant dose difference was observed in Dmean to PTV, bilateral lungs-PTV, pericardium, esophagus, liver, normal tissue volume receiving >5, and >10 Gy and NTID. It was observed that while the tCT and gamma pass rates decreased, the maximum dose to PTV increased as the SU increased. No other significant dose differences were observed between the two MC versions compared. CONCLUSION For lung VMAT plans, in both versions, SU could be accepted up to 3% per plan with reduced tCT without compromising plan quality and deliverability by accepting variations in point dose and an inhomogeneous dose within the target. The plan quality of Monaco™V5.10.02 was similar to Monaco™TPS-V5.11 except for tCT.
Collapse
Affiliation(s)
- P. Mohandass
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India,Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India,Address for correspondence: Mr. P. Mohandass, Department of Radiation Oncology, Fortis Hospital, Sector-62, Phase 8, SAS Nagar, Mohali - 160 062, Punjab, India. E-mail:
| | - D. Khanna
- Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - D. Manigandan
- Department of Radiotherapy, Medanta The Medicity Hospital, Gurgaon, Haryana, India
| | - Narendra Kumar Bhalla
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India
| | - Abhishek Puri
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India
| |
Collapse
|
15
|
Krishna GS, Srinivas V, Ayyangar KM, Reddy PY. Comparative study of old and new versions of treatment planning system using dose volume histogram indices of clinical plans. J Med Phys 2016; 41:192-7. [PMID: 27651566 PMCID: PMC5019038 DOI: 10.4103/0971-6203.189489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Recently, Eclipse treatment planning system (TPS) version 8.8 was upgraded to the latest version 13.6. It is customary that the vendor gives training on how to upgrade the existing software to the new version. However, the customer is provided less inner details about changes in the new software version. According to manufacturer, accuracy of point dose calculations and irregular treatment planning is better in the new version (13.6) compared to the old version (8.8). Furthermore, the new version uses voxel-based calculations while the earlier version used point dose calculations. Major difference in intensity-modulated radiation therapy (IMRT) plans was observed between the two versions after re-optimization and re-calculations. However, minor difference was observed for IMRT cases after performing only re-calculations. It is recommended TPS quality assurance to be performed after any major upgrade of software. This can be done by performing dose calculation comparisons in TPS. To assess the difference between the versions, 25 clinical cases from the old version were compared keeping all the patient data intact including the monitor units and comparing the differences in dose calculations using dose volume histogram (DVH) analysis. Along with DVH analysis, uniformity index, conformity index, homogeneity index, and dose spillage index were also compared for both versions. The results of comparative study are presented in this paper.
Collapse
Affiliation(s)
- Gangarapu Sri Krishna
- Department of Radiotherapy, MNJ Institute of Oncology and Regional Cancer Centre, Hyderabad, Telangana, India; Department of Physics, Osmania University, Hyderabad, Telangana, India
| | - Vuppu Srinivas
- Department of Radiotherapy, MNJ Institute of Oncology and Regional Cancer Centre, Hyderabad, Telangana, India
| | - K M Ayyangar
- International Cancer Centre, Mahatma Gandhi Memorial Medical Trust, Bhimavaram, Andhra Pradesh, India
| | | |
Collapse
|
16
|
Mampuya WA, Nakamura M, Hirose Y, Kitsuda K, Ishigaki T, Mizowaki T, Hiraoka M. Difference in dose-volumetric data between the analytical anisotropic algorithm, the dose-to-medium, and the dose-to-water reporting modes of the Acuros XB for lung stereotactic body radiation therapy. J Appl Clin Med Phys 2016; 17:341-347. [PMID: 27685138 PMCID: PMC5874099 DOI: 10.1120/jacmp.v17i5.6338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate the difference in dose‐volumetric data between the analytical anisotropic algorithms (AAA) and the two dose reporting modes of the Acuros XB, namely, the dose to water (AXB−Dw) and dose to medium (AXB−Dm) in lung stereotactic body radiotherapy (SBRT). Thirty‐eight plans were generated using the AXB−Dm in Eclipse Treatment Planning System (TPS) and then recalculated with the AXB−Dw and AAA, using identical beam setup. A dose of 50 Gy in 4 fractions was prescribed to the isocenter and the planning target volume (PTV) D95%. The isocenter was always inside the PTV. The following dose‐volumetric parameters were evaluated; D2%, D50%, D95%, and D98% for the internal target volume (ITV) and the PTV. Two‐tailed paired Student's t‐tests determined the statistical significance. Although for most of the parameters evaluated, the mean differences observed between the AAA, AXB−Dmand AXB−Dw were statistically significant (p<0.05), absolute differences were rather small, in general less than 5% points. The maximum mean difference was observed in the ITV D50% between the AXB−Dm and the AAA and was 1.7% points under the isocenter prescription and 3.3% points under the D95 prescription. AXB−Dm produced higher values than AXB−Dw with differences ranging from 0.4 to 1.1% points under isocenter prescription and 0.0 to 0.7% points under the PTV D95% prescription. The differences observed under the PTV D95% prescription were larger compared to those observed for the isocenter prescription between AXB−Dm and AAA, AXB−Dm and AXB−Dw, and AXB−Dw and AAA. Although statistically significant, the mean differences between the three algorithms are within 3.3% points. PACS number(s): 87.55.x, 87.55.D‐, 87.55.dk
Collapse
|