1
|
Zhang D, Zhang Y, Xia S, Shen P, Yang C. Metabolic profiling of synovial fluid in human temporomandibular joint osteoarthritis. Front Immunol 2024; 15:1335181. [PMID: 38529278 PMCID: PMC10961395 DOI: 10.3389/fimmu.2024.1335181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Temporomandibular joint (TMJ) osteoarthritis (OA) is a common TMJ degenerative disease with an unclear mechanism. Synovial fluid (SF), an important component of TMJ, contains various proteins and metabolites that may directly contribute to OA. The present study aimed to investigate the influence of SF in TMJOA at the metabolite level. Methods Untargeted and widely targeted metabolic profiling were employed to identify metabolic changes in SF of 90 patients with different TMJOA grades according to TMJ magnetic resonance imaging. Results A total 1498 metabolites were detected. Most of the metabolites were amino acids and associated metabolites, benzene and substituted derivatives, and lipids. Among patients with mild, moderate and severe TMJOA, 164 gradually increasing and 176 gradually decreasing metabolites were identified, indicating that biosynthesis of cofactors, choline metabolism, mineral absorption and selenocompound metabolism are closely related to TMJOA grade. Combined metabolomics and clinical examination revealed 37 upregulated metabolites and 16 downregulated metabolites in patients with pain, of which 19 and 26 metabolites were positively and negatively correlated, respectively, with maximum interincisal opening. A model was constructed to diagnose TMJOA grade and nine biomarkers were identified. The identified metabolites are key to exploring the mechanism of TMJOA. Discussion In the present study, a metabolic profile was constructed and assessed using a much larger number of human SF samples from patients with TMJOA, and a model was established to contribute to the diagnosis of TMJOA grade. The findings expand our knowledge of metabolites in human SF of TMJOA patients, and provide an important basis for further research on the pathogenesis and treatment of TMJOA.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Clarke EJ, Anderson JR, Peffers MJ. Nuclear magnetic resonance spectroscopy of biofluids for osteoarthritis. Br Med Bull 2021; 137:28-41. [PMID: 33290503 PMCID: PMC7995852 DOI: 10.1093/bmb/ldaa037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/01/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteoarthritis is a common degenerative musculoskeletal disease of synovial joints. It is characterized by a metabolic imbalance resulting in articular cartilage degradation, reduced elastoviscosity of synovial fluid and an altered chondrocyte phenotype. This is often associated with reduced mobility, pain and poor quality of life. Subsequently, with an ageing world population, osteoarthritis is of increasing concern to public health. Nuclear magnetic resonance (NMR) spectroscopy can be applied to characterize the metabolomes of biofluids, determining changes associated with osteoarthritis pathology, identifying potential biomarkers of disease and alterations to metabolic pathways. SOURCES OF DATA A comprehensive search of PubMed and Web of Science databases using combinations of the following keywords: 'NMR Spectroscopy', 'Blood', 'Plasma', 'Serum', 'Urine', 'Synovial Fluid' and 'Osteoarthritis' for articles published from 2000 to 2020. AREAS OF AGREEMENT The number of urine metabolomics studies using NMR spectroscopy to investigate osteoarthritis is low, whereas the use of synovial fluid is significantly higher. Several differential metabolites have previously been identified and mapped to metabolic pathways involved in osteoarthritis pathophysiology. AREAS OF CONTROVERSY Conclusions are sometimes conservative or overinflated, which may reflect the variation in reporting standards. NMR metabolic experimental design may require further consideration, as do the animal models used for such studies. GROWING POINTS There are various aspects which require improvement within the field. These include stricter adherence to the Metabolomics Standards Initiative, inclusive of the standardization of metabolite identifications; increased utilization of integrating NMR metabolomics with other 'omic' disciplines; and increased deposition of raw experimental files into open access online repositories, allowing greater transparency and enabling additional future analyses. AREAS TIMELY FOR DEVELOPING RESEARCH Overall, this research area could be improved by the inclusion of more heterogeneous cohorts, reflecting varying osteoarthritis phenotypes, and larger group sizes ensuring studies are not underpowered. To correlate local and systemic environments, the use of blood for diagnostic purposes, over the collection of synovial fluid, requires increased attention. This will ultimately enable biomarkers of disease to be determined that may provide an earlier diagnosis, or provide potential therapeutic targets for osteoarthritis, ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Emily J Clarke
- Institute of Life Course and Medical Sciences, Musculoskeletal and Ageing Science, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - James R Anderson
- Institute of Life Course and Medical Sciences, Musculoskeletal and Ageing Science, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, Musculoskeletal and Ageing Science, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
3
|
Akhbari P, Jaggard MK, Boulangé CL, Vaghela U, Graça G, Bhattacharya R, Lindon JC, Williams HRT, Gupte CM. Differences between infected and noninfected synovial fluid. Bone Joint Res 2021; 10:85-95. [PMID: 33502243 PMCID: PMC7845460 DOI: 10.1302/2046-3758.101.bjr-2020-0285.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. METHODS In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. RESULTS A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). CONCLUSION Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85-95.
Collapse
Affiliation(s)
- Pouya Akhbari
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew K Jaggard
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Trust, London, UK
| | - Claire L Boulangé
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Uddhav Vaghela
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rajarshi Bhattacharya
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Trust, London, UK
| | - John C Lindon
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Chinmay M Gupte
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
4
|
Southan J, McHugh E, Walker H, Ismail HM. Metabolic Signature of Articular Cartilage Following Mechanical Injury: An Integrated Transcriptomics and Metabolomics Analysis. Front Mol Biosci 2020; 7:592905. [PMID: 33392255 PMCID: PMC7773849 DOI: 10.3389/fmolb.2020.592905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical injury to the articular cartilage is a key risk factor in joint damage and predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable tool to understand tissue behavior in response to mechanical injury insult and help to identify key pathways linking injury to tissue damage. Global or untargeted metabolomics provides a comprehensive characterization of the metabolite content of biological samples. In this study, we aimed to identify the metabolic signature of cartilage tissue post injury. We employed an integrative analysis of transcriptomics and global metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics analysis showed a significant enrichment of gene sets involved in regulation of metabolic processes including carbon metabolism, biosynthesis of amino acids, and steroid biosynthesis. Integrative analysis of enriched genes with putatively identified metabolite features post injury showed a significant enrichment for carbohydrate metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine, threonine, and arginine and proline metabolism). We then performed a cross analysis of global metabolomics profiles of murine and porcine ex vivo cartilage injury models. The top commonly modulated metabolic pathways post injury included arginine and proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6 metabolic pathways. These results highlight the significant modulation of metabolic responses following mechanical injury to articular cartilage. Further investigation of these pathways would provide new insights into the role of the early metabolic state of articular cartilage post injury in promoting tissue damage and its link to disease progression of osteoarthritis.
Collapse
Affiliation(s)
- Jennifer Southan
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Emily McHugh
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Heather Walker
- biOMICS Mass Spectrometry Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Rockel JS, Kapoor M. The Metabolome and Osteoarthritis: Possible Contributions to Symptoms and Pathology. Metabolites 2018; 8:metabo8040092. [PMID: 30551581 PMCID: PMC6315757 DOI: 10.3390/metabo8040092] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a progressive, deteriorative disease of articular joints. Although traditionally viewed as a local pathology, biomarker exploration has shown that systemic changes can be observed. These include changes to cytokines, microRNAs, and more recently, metabolites. The metabolome is the set of metabolites within a biological sample and includes circulating amino acids, lipids, and sugar moieties. Recent studies suggest that metabolites in the synovial fluid and blood could be used as biomarkers for OA incidence, prognosis, and response to therapy. However, based on clinical, demographic, and anthropometric factors, the local synovial joint and circulating metabolomes may be patient specific, with select subsets of metabolites contributing to OA disease. This review explores the contribution of the local and systemic metabolite changes to OA, and their potential impact on OA symptoms and disease pathogenesis.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M1C 1A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|