1
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
De Deene Y. Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels 2022; 8:599. [PMID: 36135311 PMCID: PMC9498652 DOI: 10.3390/gels8090599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022] Open
Abstract
Gel dosimetry was developed in the 1990s in response to a growing need for methods to validate the radiation dose distribution delivered to cancer patients receiving high-precision radiotherapy. Three different classes of gel dosimeters were developed and extensively studied. The first class of gel dosimeters is the Fricke gel dosimeters, which consist of a hydrogel with dissolved ferrous ions that oxidize upon exposure to ionizing radiation. The oxidation results in a change in the nuclear magnetic resonance (NMR) relaxation, which makes it possible to read out Fricke gel dosimeters by use of quantitative magnetic resonance imaging (MRI). The radiation-induced oxidation in Fricke gel dosimeters can also be visualized by adding an indicator such as xylenol orange. The second class of gel dosimeters is the radiochromic gel dosimeters, which also exhibit a color change upon irradiation but do not use a metal ion. These radiochromic gel dosimeters do not demonstrate a significant radiation-induced change in NMR properties. The third class is the polymer gel dosimeters, which contain vinyl monomers that polymerize upon irradiation. Polymer gel dosimeters are predominantly read out by quantitative MRI or X-ray CT. The accuracy of the dosimeters depends on both the physico-chemical properties of the gel dosimeters and on the readout technique. Many different gel formulations have been proposed and discussed in the scientific literature in the last three decades, and scanning methods have been optimized to achieve an acceptable accuracy for clinical dosimetry. More recently, with the introduction of the MR-Linac, which combines an MRI-scanner and a clinical linear accelerator in one, it was shown possible to acquire dose maps during radiation, but new challenges arise.
Collapse
Affiliation(s)
- Yves De Deene
- Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW 1871, Australia; or
- Ingham Institute, Liverpool, NSW 2170, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Alyani Nezhad Z, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot 2021; 179:110015. [PMID: 34753087 DOI: 10.1016/j.apradiso.2021.110015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The accuracy of dose delivered to tumors and surrounding normal tissues is vital in either radiotherapy using low energy photons and radiological techniques as well as radiotherapy with mega voltage energies. This systematic review focuses on applications of gel dosimetry in low energy radiation contexts applied either through radiotherapy or interventional radiology. METHODS Literature was reviewed based on electronic databases: Google Scholar, Scopus, Embase, PubMed, Science Direct, Research Gate and IOP science. The search was conducted on relevant terms in the title and keywords. 82 articles related to our criteria has been extracted and included in the study. RESULTS The findings demonstrated that almost all types of gel dosimeters had an acceptable accuracy and high resolution in low energy radiation contexts with their own limitations and advantages. CONCLUSION Gel dosimeters compete well with other conventional dosimeters in terms of tissue equivalence and energy dependence; however, choosing the best gel dosimeter for use in low energy radiation dosimetry depends on their different limitation and advantages. There are some general features about each gel group which can help to select the suitable gel related to our work. For example, methacrylic acid based gel dosimeters show higher sensitivity compared to other types of gel dosimeters but have more toxicity and are dose rate dependent in the range of dose rates applied in low energy contexts. In addition, Fricke gel dosimeters exhibit less sensitivity while they are independent of dose rate and energy applied in low energy situations.
Collapse
Affiliation(s)
- Zahra Alyani Nezhad
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pant K, Umeh C, Oldham M, Floyd S, Giles W, Adamson J. Comprehensive radiation and imaging isocenter verification using NIPAM kV-CBCT dosimetry. Med Phys 2020; 47:927-936. [PMID: 31899806 DOI: 10.1002/mp.14008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To develop and demonstrate a comprehensive method to directly measure radiation isocenter uncertainty and coincidence with the cone-beam computed tomography (kV-CBCT) imaging coordinate system that can be carried out within a typical quality assurance (QA) time slot. METHODS An N-isopropylacrylamide (NIPAM) three-dimensional (3D) dosimeter for which dose is observed as increased electron density in kV-CBCT is irradiated at eight couch/gantry combinations which enter the dosimeter at unique orientations. One to three CBCTs are immediately acquired, radiation profile is detected per beam, and displacement from imaging isocenter is quantified. We performed this test using a 5 mm diameter MLC field, and 7.5 and 4 mm diameter cones, delivering approximately 16 Gy per beam. CBCT settings were 1035-4050 mAs, 80-125 kVs, smooth filter, 1 mm slice thickness. The two-dimensional (2D) displacement of each beam from the imaging isocenter was measured within the planning system, and Matlab code developed in house was used to quantify relevant parameters based on the actual beam geometry. Detectability of the dose profile in the CBCT was quantified as the contrast-to-noise ratio (CNR) of the irradiated high-dose regions relative to the surrounding background signal. Our results were compared to results determined by the traditional Winston-Lutz test, film-based "star shots," and the vendor provided machine performance check (MPC). The ability to detect alignment errors was demonstrated by repeating the test after applying a 0.5 mm shift to the MLCs in the direction of leaf travel. In addition to radiation isocenter and coincidence with CBCT origin, the analysis also calculated the actual gantry and couch angles per beam. RESULTS Setup, MV irradiation, and CBCT readout were carried out within 38 min. After subtracting the background signal from the pre-CBCT, the CNR of the dosimeter signal from the irradiation with the MLCs (125 kVp, 1035 mAs, n = 3), 7.5 mm cone (125 kVp, 1035 mAs, n = 3), and 4 mm cone (80 kVp, 4050 mAs, n = 1) was 5.4, 5.9, and 2.9, respectively. The minimum radius that encompassed all beams calculated using the automated analysis was 0.38, 0.48, and 0.44 mm for the MLCs, 7.5 mm cone, and 4 mm cone, respectively. When determined manually, these values were slightly decreased at 0.28, 0.41, and 0.40 mm. For comparison, traditional Winston-Lutz test with MLCs and MPC measured the 3D isocenter radius to be 0.24 mm. Lastly, when a 0.5 mm shift to the MLCs was applied, the smallest radius that intersected all beams increased from 0.38 to 0.90 mm. The mean difference from expected value for gantry angle was 0.19 ± 0.29°, 0.17 ± 0.23°, and 0.12 ± 0.14° for the MLCs, 7.5 mm cone, and 4 mm cone, respectively. The mean difference from expected for couch angle was -0.07 ± 0.28°, -0.08 ± 0.66°, and 0.04 ± 0.25°. CONCLUSIONS This work demonstrated the feasibility of a comprehensive isocenter verification using a NIPAM dosimeter with sub-mm accuracy which incorporates evaluation of coincidence with imaging coordinate system, and may be applicable to all SRS cones as well as MLCs.
Collapse
Affiliation(s)
- Kiran Pant
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Chibuike Umeh
- Medical Physics Graduate Program, Duke Kunshan University, Suzhou, China.,Department of Physics and Astronomy, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Will Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiol Phys Technol 2015. [PMID: 26205316 DOI: 10.1007/s12194-015-0331-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
Collapse
|
6
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010. [PMID: 20150687 DOI: 10.1088/0031‐9155/55/5/r01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010; 55:R1-63. [PMID: 20150687 DOI: 10.1088/0031-9155/55/5/r01] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This study reports on the effects of x-ray CT dose in CT imaged normoxic polyacrylamide (nPAG) gel dosimeters. The investigation is partitioned into three sections. First, the CT dose absorbed in nPAG is quantified under a range of typical gel CT imaging protocols. It is found that the maximum absorbed CT dose occurs for volumetric imaging and is in the range of 4.6 +/- 0.2 cGy/image. This does scales linearly with image averaging. Second, using Raman spectroscopy, the response of nPAG to CT imaging photon energies (i.e., 120-140 kVp) is established and compared to the well known dose response of nPAG exposed to 6 MV photons. It is found that nPAG exhibits a weaker response (per unit dose) to 140-kVp incident photons as compared to 6 MV incident photons (slopes m6 mv = -0.0374 +/- 0.0006 Gy(-1) and m140 kVp = -0.016 +/- 0.001 Gy(-1)). Finally, using the above data, an induced change in CT number (deltaN(CT)) is calculated for nPAG imaged using a range of gel imaging protocols. It is found that under typical imaging protocols (120-140 kVp, 200 mAs, approximately 16-32 image averages) a deltaN(CT) < 0.2 H is induced in active nPAG dosimeters. This deltaN(CT) is below the current limit of detectability of CT nPAG polymer gel dosimetry. Under expanded imaging protocols (e.g., very high number of image averages) an induced deltaN(CT) of approximately 0.5 H is possible. In these situations the additional polymerization occurring in nPAG due to the imaging process may need to be accounted for.
Collapse
Affiliation(s)
- P Baxter
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada
| | | | | |
Collapse
|
9
|
Subramanian B, Ravindran PB, Baldock C. Optimization of the imaging protocol of an X-ray CT scanner for evaluation of normoxic polymer gel dosimeters. J Med Phys 2006; 31:72-7. [PMID: 21206668 PMCID: PMC3004139 DOI: 10.4103/0971-6203.26692] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/26/2006] [Indexed: 11/04/2022] Open
Abstract
X-ray computer tomography (CT) has previously been reported as an evaluation tool for polymer gel (PAG) dosimeters. In this study, the imaging protocol of a Siemens Emotion X-ray CT scanner was optimized to evaluate PAGAT normoxic gel dosimeters. The scan parameters were optimized as 130 kV and 150 mA with a slice thickness of 3 mm for smaller fields and 5 mm for larger fields of irradiation. The number of images to be averaged to reduce noise to an acceptable level was concluded to be 25. It was also concluded that the total monomer concentration required is 7% with 10 mM THP to obtain a maximum change in CT number at dose levels up to 15 Gy for evaluation with X-ray CT. Optimal scan parameters may vary with X-ray CT scanner. Hence the imaging protocol of each scanner to be used for evaluating polymer gels requires individual optimization for the purposes of gel dosimetry evaluation.
Collapse
Affiliation(s)
- Brindha Subramanian
- Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
10
|
Hill B, Venning AJ, Baldock C. A preliminary study of the novel application of normoxic polymer gel dosimeters for the measurement of CTDI on diagnostic x-ray CT scanners. Med Phys 2005; 32:1589-97. [PMID: 16013718 DOI: 10.1118/1.1925181] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Computer tomography dose index (CTDI) is a measurement undertaken during acceptance testing and subsequent quality assurance measurements of diagnostic x-ray CT scanners for the determination of patient dose. Normoxic polymer gel dosimeters have been used for the first time to measure dose and subsequently CTDI during acceptance testing of a CT scanner and compared with the conventional ionization chamber measurement for a range of imaging protocols. The normoxic polymer gel dosimeter was additionally used to simultaneously determine slice-width dose profiles and CTDI in the transaxial plane, the measurements of which are usually determined with thermoluminescent dosimetry or film. The resulting CTDI for all slice widths calculated from the normoxic polymer gel dosimeter were within corresponding ionization chamber CTDI values. Slice-width dose-profiles full-width half-maximum values from the normoxic polymer gel dosimeter were compared to the slice sensitivity profiles and were within the tolerances of the manufacturer. Normoxic polymer gel dosimeters have been shown to be a useful device for determining CTDI and dose distributions for CT equipment, and provide additional information not possible with just the use of an ionization chamber.
Collapse
Affiliation(s)
- Brendan Hill
- Medical Physics Section, Biomedical Engineering Services, The Canberra Hospital, POB 11 Woden ACT 2606, Australia.
| | | | | |
Collapse
|
11
|
Hilts M, Jirasek A, Duzenli C. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations. Phys Med Biol 2005; 49:2477-90. [PMID: 15272668 DOI: 10.1088/0031-9155/49/12/001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (delta(rho)gel) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (delta(rho)polymer). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (delta(rho)gel dose response) are discovered. The first property is that delta(rho)polymer)depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher deltarho(polymer)than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the delta(rho)gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T < or = 2%, monomer consumption and delta(rho)polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that delta(rho)polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, delta(rho)polymerand %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the sensitivity of PAG density to dose. As such, future research into new gel formulations for high sensitivity CT polymer gel dosimetry should focus on gels that exhibit an intrinsic density change and maximizing polymer yield in these systems.
Collapse
Affiliation(s)
- M Hilts
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, BC V6R 2B6, Canada.
| | | | | |
Collapse
|