1
|
Stephens H, Deans C, Schlect D, Kairn T. Development of a method for treating lower-eyelid carcinomas using superficial high dose rate brachytherapy. Phys Eng Sci Med 2020; 43:1317-1325. [PMID: 33123861 DOI: 10.1007/s13246-020-00935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
In this study, a method was developed for delivering high dose rate (HDR) brachytherapy treatments to basal cell carcinomas (BCCs) as well as squamous cell carcinomas (SCCs) of the lower eyelid via superficial catheters. Clinically-realistic BCC/SCC treatment areas were marked in the lower-eyelid region on a head phantom and several arrangements of catheters and bolus were trialled for treating those areas. The use of one or two catheters of different types was evaluated, and sources of dosimetric uncertainty (including air gaps) were evaluated and mitigated. Test treatments were planned for delivery with an iridium-192 source, using the Oncentra Brachy treatment planning system (Elekta AB, Stockholm, Sweden). Dose distributions were evaluated using radiochromic film. The proposed method was shown to be clinically viable, for using superficial HDR brachytherapy to overcome anatomical difficulties and create non-surgical treatments for BCC and SCC of the lower eyelid.
Collapse
Affiliation(s)
- H Stephens
- Chermside Medical Complex, Ground Floor, 956 Gympie Road, Chermside, Qld, 4032, Australia.
- School of Physical Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - C Deans
- Chermside Medical Complex, Ground Floor, 956 Gympie Road, Chermside, Qld, 4032, Australia
- Icon Integrated Cancer Centre, 9 McLennan Ct, North Lakes, Qld, 4509, Australia
| | - D Schlect
- Chermside Medical Complex, Ground Floor, 956 Gympie Road, Chermside, Qld, 4032, Australia
| | - T Kairn
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Qld, 4029, Australia
- Science and Engineering Faculty, Queensland University of Technology, Gardens Point, Qld, 4001, Australia
| |
Collapse
|
2
|
A comprehensive dose assessment of irradiated hand by iridium-192 source in industrial radiography. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:611-616. [PMID: 28871483 DOI: 10.1007/s13246-017-0568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 06/22/2017] [Indexed: 10/18/2022]
Abstract
Among the various incidents in industrial radiography, inadvertent handling of sources by hands is one of the most frequent incidents in which some parts of the hands may be locally exposed to high doses. An accurate assessment of extremity dose assists medical doctors in selecting appropriate treatments, preventing the injury expansion in the region. In this study, a phantom was designed to simulate a fisted hand of a radiographer when the worker holds a radioactive source in their hands. The local doses were measured using implanted TLDs in the phantom at different distances from a source. Furthermore, skin dose distribution was measured by Gaf-chromic films in the palm region of the phantom. The reliability of the measurements has been studied via analytical as well as Monte-Carlo simulation methods. The results showed that the new phantom design can be used reliably in extremity dose assessments, particularly at the points next to the source.
Collapse
|
3
|
Tian Z, Zhang M, Hrycushko B, Albuquerque K, Jiang SB, Jia X. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing. Brachytherapy 2017; 15:387-398. [PMID: 27216118 DOI: 10.1016/j.brachy.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. METHODS AND MATERIALS gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. RESULTS Radial dose function in water calculated by gBMC showed <0.6% relative difference from that of the TG-43 data. Difference in anisotropy function was <1%. In two heterogeneous slab phantoms and one shielded cylinder applicator case, average dose discrepancy between gBMC and Acuros BV was <0.87%. For a tandem and ovoid patient case, good agreement between gBMC and Acruos BV results was observed in both isodose lines and dose-volume histograms. In terms of the efficiency, it took ∼47.5 seconds for gBMC to reach 0.15% statistical uncertainty within the 5% isodose line for the patient case. CONCLUSIONS The accuracy and efficiency of a new GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications.
Collapse
Affiliation(s)
- Z Tian
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| | - M Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - B Hrycushko
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - K Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - S B Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - X Jia
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
4
|
Fu W, Kim JO, Chen AS, Mehta K, Pucci P, Huq MS. Dosimetric experience with 2 commercially available multilumen balloon-based brachytherapy to deliver accelerated partial-breast irradiation. Med Dosim 2015; 40:195-200. [DOI: 10.1016/j.meddos.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
|
5
|
Zhang M, Zou W, Chen T, Kim L, Khan A, Haffty B, Yue NJ. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation. Phys Med Biol 2013; 59:455-64. [DOI: 10.1088/0031-9155/59/2/455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Pearson D, Williams EA. Dose modification factor analysis of multilumen balloon brachytherapy applicator with Monte Carlo simulation. J Appl Clin Med Phys 2013; 15:54–62. [PMID: 24892326 PMCID: PMC5711056 DOI: 10.1120/jacmp.v15i3.4498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 12/13/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022] Open
Abstract
The Contura brachytherapy applicator is a silicone balloon with five lumens in which a high-dose-rate brachytherapy source can traverse. Multilumen applicators, like the Contura, are used in accelerated partial breast irradiation (APBI) brachytherapy in instances where asymmetric dose distributions are desired; for example, when the applicator surface-to-skin thickness is small (< 7 mm). In these instances, the air outside the patient and the lung act as a poor scattering medium, scattering less dose back into the breast and affecting the dose distribution. The recent report by Task Group 186 of the American Association of Physicists in Medicine (AAPM) has outlined the importance of moving towards brachytherapy dose calculations using heterogeneity corrections. However, at this time, many commercial treatment planning systems do not correct for tissue heterogeneity, which can result in inaccuracies in the planned dose distribution. To quantify the deviation in the skin dose we utilize the dose modification factor (DMF), defined as the ratio of the dose rate at 1 cm beyond the applicator surface with homogenous medium, to the dose rate at 1 cm with heterogeneous medium. This investigation models the Contura applicator with the Monte Carlo N-Particle code version 5, and determines a DMF through simulation. Taking all geometrical considerations into account, an accurate model of the Contura balloon applicator was created in MCNP and used to run simulations. The dose modification factor was found to be only slightly dependent on whether the dose distribution was symmetric or asymmetric. These results indicate that the dose delivered to part of the PTV may be lower than the planned dose by up to 12%, and that these brachytherapy plans should be viewed with caution. In addition to studying the effects of backscatter, an evaluation was made regarding the capabilities of the Contura device to shape an asymmetric dose distribution. We compared these results to a previous study of a MammoSite ML and a SAVI device and found that the dose shaping capabilities of the Contura were quite similar to that of the MammoSite ML, but markedly inferior to the SAVI.
Collapse
|
7
|
Hsu SM, Wu CH, Lee JH, Hsieh YJ, Yu CY, Liao YJ, Kuo LC, Liang JA, Huang DYC. A study on the dose distributions in various materials from an Ir-192 HDR brachytherapy source. PLoS One 2012; 7:e44528. [PMID: 22957078 PMCID: PMC3434140 DOI: 10.1371/journal.pone.0044528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022] Open
Abstract
Dose distributions of 192Ir HDR brachytherapy in phantoms simulating water, bone, lung tissue, water-lung and bone-lung interfaces using the Monte Carlo codes EGS4, FLUKA and MCNP4C are reported. Experiments were designed to gather point dose measurements to verify the Monte Carlo results using Gafchromic film, radiophotoluminescent glass dosimeter, solid water, bone, and lung phantom. The results for radial dose functions and anisotropy functions in solid water phantom were consistent with previously reported data (Williamson and Li). The radial dose functions in bone were affected more by depth than those in water. Dose differences between homogeneous solid water phantoms and solid water-lung interfaces ranged from 0.6% to 14.4%. The range between homogeneous bone phantoms and bone-lung interfaces was 4.1% to 15.7%. These results support the understanding in dose distribution differences in water, bone, lung, and their interfaces. Our conclusion is that clinical parameters did not provide dose calculation accuracy for different materials, thus suggesting that dose calculation of HDR treatment planning systems should take into account material density to improve overall treatment quality.
Collapse
Affiliation(s)
- Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Chin-Hui Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Jeng-Hung Lee
- Health Physics Division, Institute of Nuclear Energy Research, Longtan, Taiwan, ROC
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chun-Yen Yu
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Li-Cheng Kuo
- Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - David Y. C. Huang
- Radiation Oncology, Faculty of Memorial Sloan-Kettering Cancer Center at Rockville Centre, Rockville Centre, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pacemaker/implantable cardioverter–defibrillator dose in balloon high-dose-rate brachytherapy for breast cancer treatment. Brachytherapy 2012; 11:380-6. [DOI: 10.1016/j.brachy.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/01/2023]
|
9
|
Oh S, Scott J, Shin DH, Suh TS, Kim S. Measurements of dose discrepancies due to inhomogeneities and radiographic contrast in balloon catheter brachytherapy. Med Phys 2009; 36:3945-54. [PMID: 19810467 DOI: 10.1118/1.3183497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recently, a device called MammoSite, consisting of a balloon and a catheter, was developed to perform partial-breast irradiation using a high-dose-rate (HDR) brachytherapy unit with ease and reproducibility. However, the actual dose to the skin does not agree well with the calculated dose by the treatment planning system because of the difference between the calculation condition and the real treatment condition (i.e., homogeneous water and full scatter condition vs contrast solution and lack of full scatter condition). In this study, the authors experimentally estimated dose discrepancies due to contrast and lack of full scatter in breast HDR brachytherapy with MammoSite. Using metal-oxide-semiconductor field-effect transistor detectors and a breast phantom, the dose discrepancies between the calculation and the treatment conditions were measured according to contrast concentration (10% and 20% volume ratios), balloon size (35 and 60 cm3), and source to detector distance ranging from 25 to 50 mm. The source was an Ir-192 isotope from Nucletron HDR unit. The dose discrepancies from the calculation condition due to both contrast and lack of full scatter combined ranged from about -1.4 +/- 2.5% to -18.2 +/- 2.0% in the studied cases (error bound is in two sided confidence interval of 80% based on Student's t distribution). In all cases, the effect of lack of full scatter was dominant to that of contrast and significant dose discrepancies existed between the calculation and the real treatment conditions, indicating that the actual skin dose is less than that which is currently calculated.
Collapse
Affiliation(s)
- Seungjong Oh
- Department of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | |
Collapse
|
10
|
Garnica-Garza HM. Monte Carlo-derived TLD cross-calibration factors for treatment verification and measurement of skin dose in accelerated partial breast irradiation. Phys Med Biol 2009; 54:1621-31. [PMID: 19229101 DOI: 10.1088/0031-9155/54/6/015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monte Carlo simulation was employed to calculate the response of TLD-100 chips under irradiation conditions such as those found during accelerated partial breast irradiation with the MammoSite radiation therapy system. The absorbed dose versus radius in the last 0.5 cm of the treated volume was also calculated, employing a resolution of 20 microm, and a function that fits the observed data was determined. Several clinically relevant irradiation conditions were simulated for different combinations of balloon size, balloon-to-surface distance and contents of the contrast solution used to fill the balloon. The thermoluminescent dosemeter (TLD) cross-calibration factors were derived assuming that the calibration of the dosemeters was carried out using a Cobalt 60 beam, and in such a way that they provide a set of parameters that reproduce the function that describes the behavior of the absorbed dose versus radius curve. Such factors may also prove to be useful for those standardized laboratories that provide postal dosimetry services.
Collapse
Affiliation(s)
- H M Garnica-Garza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201 Parque de Investigación e Innovación Tecnológica, Apodaca NL C.P. 66600, Mexico.
| |
Collapse
|
11
|
Lymperopoulou G, Papagiannis P, Angelopoulos A, Karaiskos P, Georgiou E, Baltas D. A dosimetric comparison of Yb169 and Ir192 for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities. Med Phys 2006; 33:4583-9. [PMID: 17278810 DOI: 10.1118/1.2392408] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Monte Carlo simulation dosimetry is used to compare 169Yb to 192Ir for breast high dose rate (HDR) brachytherapy applications using multiple catheter implants. Results for bare point sources show that while 169Yb delivers a greater dose rate per unit air kerma strength at the radial distance range of interest to brachytherapy in homogeneous water phantoms, it suffers a greater dose rate deficit in missing scatter conditions relative to 192Ir. As a result of these two opposing factors, in the scatter conditions defined by the presence of the lung and the finite patient dimensions in breast brachytherapy the dose distributions calculated in a patient equivalent mathematical phantom by Monte Carlo simulations for the same implant of either 169Yb or 1921r commercially available sources are found comparable. Dose volume histogram results support that 169Yb could be at least as effective as 192Ir delivering the same dose to the lung and slightly reduced dose to the breast skin. The current treatment planning systems' approach of employing dosimetry data precalculated in a homogeneous water phantom of given shape and dimensions, however, is shown to notably overestimate the delivered dose distribution for 169Yb. Especially at the skin and the lung, the treatment planning system dose overestimation is on the order of 15%-30%. These findings do not undermine the potential of 169Yb HDR sources for breast brachytherapy relative to the most commonly used 192Ir HDR sources. They imply, however, that there could be a need for the amendment of dose calculation algorithms employed in clinical treatment planning of particular brachytherapy applications, especially for intermediate photon energy sources such as 169Yb.
Collapse
Affiliation(s)
- G Lymperopoulou
- Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71, Athens, Greece.
| | | | | | | | | | | |
Collapse
|