1
|
The burst gap is a peripheral temporal code for pitch perception that is shared across audition and touch. Sci Rep 2022; 12:11014. [PMID: 35773321 PMCID: PMC9246943 DOI: 10.1038/s41598-022-15269-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
When tactile afferents were manipulated to fire in periodic bursts of spikes, we discovered that the perceived pitch corresponded to the inter-burst interval (burst gap) in a spike train, rather than the spike rate or burst periodicity as previously thought. Given that tactile frequency mechanisms have many analogies to audition, and indications that temporal frequency channels are linked across the two modalities, we investigated whether there is burst gap temporal encoding in the auditory system. To link this putative neural code to perception, human subjects (n = 13, 6 females) assessed pitch elicited by trains of temporally-structured acoustic pulses in psychophysical experiments. Each pulse was designed to excite a fixed population of cochlear neurons, precluding place of excitation cues, and to elicit desired temporal spike trains in activated afferents. We tested periodicities up to 150 Hz using a variety of burst patterns and found striking deviations from periodicity-predicted pitch. Like the tactile system, the duration of the silent gap between successive bursts of neural activity best predicted perceived pitch, emphasising the role of peripheral temporal coding in shaping pitch. This suggests that temporal patterning of stimulus pulses in cochlear implant users might improve pitch perception.
Collapse
|
2
|
Su Y, Chung Y, Goodman DFM, Hancock KE, Delgutte B. Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits. J Assoc Res Otolaryngol 2021; 22:319-347. [PMID: 33891217 DOI: 10.1007/s10162-021-00792-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Although pitch is closely related to temporal periodicity, stimuli with a degree of temporal irregularity can evoke a pitch sensation in human listeners. However, the neural mechanisms underlying pitch perception for irregular sounds are poorly understood. Here, we recorded responses of single units in the inferior colliculus (IC) of normal hearing (NH) rabbits to acoustic pulse trains with different amounts of random jitter in the inter-pulse intervals and compared with responses to electric pulse trains delivered through a cochlear implant (CI) in a different group of rabbits. In both NH and CI animals, many IC neurons demonstrated tuning of firing rate to the average pulse rate (APR) that was robust against temporal jitter, although jitter tended to increase the firing rates for APRs ≥ 1280 Hz. Strength and limiting frequency of spike synchronization to stimulus pulses were also comparable between periodic and irregular pulse trains, although there was a slight increase in synchronization at high APRs with CI stimulation. There were clear differences between CI and NH animals in both the range of APRs over which firing rate tuning was observed and the prevalence of synchronized responses. These results suggest that the pitches of regular and irregular pulse trains are coded differently by IC neurons depending on the APR, the degree of irregularity, and the mode of stimulation. In particular, the temporal pitch produced by periodic pulse trains lacking spectral cues may be based on a rate code rather than a temporal code at higher APRs.
Collapse
Affiliation(s)
- Yaqing Su
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, USA. .,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Dan F M Goodman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.,Present Address: Department of Electrical and Electronic Engineering, Imperial College London, London, England
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ungan P, Yagcioglu S. Significant variations in Weber fraction for changes in inter-onset interval of a click train over the range of intervals between 5 and 300 ms. Front Psychol 2015; 5:1453. [PMID: 25566133 PMCID: PMC4264405 DOI: 10.3389/fpsyg.2014.01453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
It is a common psychophysical experience that a train of clicks faster than ca. 30/s is heard as one steady sound, whereas temporal patterns occurring on a slower time scale are perceptually resolved as individual auditory events. This phenomenon suggests the existence of two different neural mechanisms for processing of auditory sequences with fast and slow repetition rates. To test this hypothesis we used Weber’s law, which is known to be valid for perception of time intervals. Discrimination thresholds and Weber fractions (WFs) for 12 base inter-click intervals (ICIs) between 5 and 300 ms were measured from 10 normal hearing subjects by using an “up–down staircase” algorithm. The mean WF, which is supposed to be constant for any perceptual mechanism according to Weber’s law, displayed significant variation with click rate. WFs decreased sharply from an average value of around 5% at repetition rates below 20 Hz to about 0.5% at rates above 67 Hz. Parallel to this steep transition, subjects reported that at rates below 20 Hz they perceived periodicity as a fast tapping rhythm, whereas at rates above 50 Hz the perceived quality was a pitch. Such a dramatic change in WF indicated the existence of two separate mechanisms for processing the click rate for long and short ICIs, based on temporal and spectral features, respectively. A range of rates between 20 and 33 Hz, in which the rate discrimination threshold was maximum, appears to be a region where both of the presumed time and pitch mechanisms are relatively insensitive to rate alterations. Based on this finding, we speculate that the interval-based perception mechanism ceases to function at around 20 Hz and the spectrum-based mechanism takes over at around 33 Hz; leaving a transitional gap in between, where neither of the two mechanisms is as sensitive. Another notable finding was a significant drop in WF for ICI = 100 ms, suggesting a connection of time perception to the electroencephalography alpha rhythm.
Collapse
Affiliation(s)
- Pekcan Ungan
- Department of Biophysics, School of Medicine, Koç University , Istanbul, Turkey ; Science Academy , Istanbul, Turkey
| | - Suha Yagcioglu
- Department of Biophysics, Faculty of Medicine, Hacettepe University , Ankara, Turkey
| |
Collapse
|