1
|
Arranz P, De la Cruz-Modino R, Sprogis KR. Investigating the effects of underwater noise from two vessels on the behaviour of short-finned pilot whales. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106574. [PMID: 38833806 DOI: 10.1016/j.marenvres.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Multiple whale-watching vessels may operate around cetaceans at any one time, and targeted animals may experience underwater noise effects. We hypothesised that the cumulative noise of two vessels with low source levels (SLs) will elicit lower behavioural disturbance in short-finned pilot whales (Globicephala macrorhynchus) compared to a single vessel with a higher SL. We measured the behaviour of whales during 26 controls (stationary vessel >300 m) and 44 treatments off Tenerife (Canary Islands, Spain). Treatments consisted of vessel approaches mimicking whale-watch scenarios (distance ∼60 m, speed 1.5 kn). Approaches with two simultaneous vessels, with maximum cumulative mid and low-frequency (0.2-110 kHz) weighted source levels (SLsMF-LF) 137-143 dB, did not affect mother-calf pairs' resting, nursing, diving, respiration rate or inter-breath interval. However, a louder single vessel approach with twin petrol engines at SLsMF-LF 139-151 dB significantly decreased the proportion of time resting for the mother. The results suggest that if a single or two vessels are present, if the cumulative SL is < 143 dB, the behavioural disturbance on the whales will be negligible. By examining noise effects from multiple vessels on the behaviour of pilot whales, the importance of incorporating a noise threshold into whale-watching guidelines was emphasised.
Collapse
Affiliation(s)
- P Arranz
- Departmento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain.
| | - R De la Cruz-Modino
- Instituto Universitario de Investigación Social y Turismo, Universidad de La Laguna, Tenerife, Spain.
| | - K R Sprogis
- The UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Great Southern Marine Research Facility, Albany, WA 6330, Australia.
| |
Collapse
|
2
|
Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel. Sci Rep 2021; 11:21195. [PMID: 34764300 PMCID: PMC8585943 DOI: 10.1038/s41598-021-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vessel noise is a primary driver of behavioural disturbance in cetaceans, which are targeted during whale-watch activities. Despite the growing, global effort for implementing best-practice principles, to date, there are no regulations on whale-watch vessel noise levels. Here, we test the hypothesis that a whale-watch vessel with a low noise emission will not elicit short-term behavioural responses in toothed whales compared to a vessel with a louder engine. We measured behavioural responses (n = 36) of short-finned pilot whales (Globicephala macrorhynchus) to whale-watch vessel approaches (range 60 m, speed 1.5 kn). Treatment approaches with a quieter electric engine (136-140 dB) compared to the same vessel with a louder petrol engine (151-139 dB) (low-frequency-mid-frequency weighted source levels, re 1 µPa RMS @ 1 m) were examined. Focal whales were resting mother and calves in small group sizes. During petrol engine treatments, the mother's mean resting time decreased by 29% compared to the control (GLM, p = 0.009). The mean proportion of time nursing for the calf was significantly influenced by petrol engine vessel passes, with a 81% decrease compared to the control (GLM, p = 0.01). There were no significant effects on behaviour from the quieter electric engine. Thus, to minimise disturbance on the activity budget of pilot whales, whale-watch vessels would ideally have source levels as low as possible, below 150 dB re 1 µPa RMS @ 1 m and perceived above ambient noise.
Collapse
|
3
|
Song Z, Zhang J, Ou W, Zhang C, Dong L, Dong J, Li S, Zhang Y. Numerical-modeling-based investigation of sound transmission and reception in the short-finned pilot whale (Globicephala macrorhynchus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:225. [PMID: 34340515 DOI: 10.1121/10.0005518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the short-finned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.
Collapse
Affiliation(s)
- Zhongchang Song
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| | - Jinhu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Wenzhan Ou
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Chuang Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lijun Dong
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jianchen Dong
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
4
|
From the Reef to the Ocean: Revealing the Acoustic Range of the Biophony of a Coral Reef (Moorea Island, French Polynesia). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of different marine species to use acoustic cues to locate reefs is known, but the maximal propagation distance of coral reef sounds is still unknown. Using drifting antennas (made of a floater and an autonomous recorder connected to a hydrophone), six transects were realized from the reef crest up to 10 km in the open ocean on Moorea island (French Polynesia). Benthic invertebrates were the major contributors to the ambient noise, producing acoustic mass phenomena (3.5–5.5 kHz) that could propagate at more than 90 km under flat/calm sea conditions and more than 50 km with an average wind regime of 6 knots. However, fish choruses, with frequencies mainly between 200 and 500 Hz would not propagate at distances greater than 2 km. These distances decreased with increasing wind or ship traffic. Using audiograms of different taxa, we estimated that fish post-larvae and invertebrates likely hear the reef at distances up to 0.5 km and some cetaceans would be able to detect reefs up to more than 17 km. These results are an empirically based validation from an example reef and are essential to understanding the effect of soundscape degradation on different zoological groups.
Collapse
|
5
|
Pedersen MB, Tønnesen P, Malinka CE, Ladegaard M, Johnson M, Aguilar de Soto N, Madsen PT. Echolocation click parameters of short-finned pilot whales (Globicephala macrorhynchus) in the wild. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1923. [PMID: 33765819 DOI: 10.1121/10.0003762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Short-finned pilot whales (Globicephala macrorhynchus) are large, deep-diving predators with diverse foraging strategies, but little is known about their echolocation. To quantify the source properties of short-finned pilot whale clicks, we made 15 deployments off the coast of Tenerife of a deep-water hydrophone array consisting of seven autonomous time-synced hydrophone recorders (SoundTraps), enabling acoustic localization and quantification of click source parameters. Of 8185 recorded pilot whale clicks, 47 were classified as being recorded on-axis, with a mean peak-to-peak source level (SL) of 181 ± 7 dB re 1 μPa, a centroid frequency of 40 ± 4 kHz, and a duration of 57 ± 23 μs. A fit to a piston model yielded an estimated half-power (-3 dB) beam width of 13.7° [95% confidence interval (CI) 13.2°-14.5°] and a mean directivity index (DI) of 22.6 dB (95% CI 22.5-22.9 dB). These measured SLs and DIs are surprisingly low for a deep-diving toothed whale, suggesting we sampled the short-finned pilot whales in a context with little need for operating a long-range biosonar. The substantial spectral overlap with beaked whale clicks emitted in similar deep-water habitats implies that pilot whale clicks may constitute a common source of false detections in beaked whale passive acoustic monitoring efforts.
Collapse
Affiliation(s)
- M B Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - P Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - C E Malinka
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Ladegaard
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| | - N Aguilar de Soto
- Biodiversidad, Ecología Marina y Conservación (BIOECOMAC), University of La Laguna, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - P T Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Smith AB, Pacini AF, Nachtigall PE. Modulation rate transfer functions from four species of stranded odontocete (Stenella longirostris, Feresa attenuata, Globicephala melas, and Mesoplodon densirostris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:377-389. [PMID: 29350260 DOI: 10.1007/s00359-018-1246-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville's beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.
Collapse
Affiliation(s)
- Adam B Smith
- Department of Biology, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Edmondson Hall Room 216, Honolulu, HI, 96822, USA. .,Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA.
| | - Aude F Pacini
- Department of Biology, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Edmondson Hall Room 216, Honolulu, HI, 96822, USA.,Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Paul E Nachtigall
- Department of Biology, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Edmondson Hall Room 216, Honolulu, HI, 96822, USA.,Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
7
|
Erbe C, Reichmuth C, Cunningham K, Lucke K, Dooling R. Communication masking in marine mammals: A review and research strategy. MARINE POLLUTION BULLETIN 2016; 103:15-38. [PMID: 26707982 DOI: 10.1016/j.marpolbul.2015.12.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 05/12/2023]
Abstract
Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals.
Collapse
Affiliation(s)
- Christine Erbe
- Centre for Marine Science & Technology, Curtin University, PO Box U1987, Perth, WA 6845, Australia.
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Kane Cunningham
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Klaus Lucke
- Centre for Marine Science & Technology, Curtin University, PO Box U1987, Perth, WA 6845, Australia.
| | - Robert Dooling
- University of Maryland, 2123D Biology-Psychology Building, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Wensveen PJ, von Benda-Beckmann AM, Ainslie MA, Lam FPA, Kvadsheim PH, Tyack PL, Miller PJO. How effectively do horizontal and vertical response strategies of long-finned pilot whales reduce sound exposure from naval sonar? MARINE ENVIRONMENTAL RESEARCH 2015; 106:68-81. [PMID: 25795075 DOI: 10.1016/j.marenvres.2015.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 05/23/2023]
Abstract
The behaviour of a marine mammal near a noise source can modulate the sound exposure it receives. We demonstrate that two long-finned pilot whales both surfaced in synchrony with consecutive arrivals of multiple sonar pulses. We then assess the effect of surfacing and other behavioural response strategies on the received cumulative sound exposure levels and maximum sound pressure levels (SPLs) by modelling realistic spatiotemporal interactions of a pilot whale with an approaching source. Under the propagation conditions of our model, some response strategies observed in the wild were effective in reducing received levels (e.g. movement perpendicular to the source's line of approach), but others were not (e.g. switching from deep to shallow diving; synchronous surfacing after maximum SPLs). Our study exemplifies how simulations of source-whale interactions guided by detailed observational data can improve our understanding about motivations behind behaviour responses observed in the wild (e.g., reducing sound exposure, prey movement).
Collapse
Affiliation(s)
- Paul J Wensveen
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom; Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands.
| | - Alexander M von Benda-Beckmann
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Michael A Ainslie
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Frans-Peter A Lam
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Petter H Kvadsheim
- Maritime Systems, Norwegian Defence Research Establishment (FFI), NO-3191, Horten, Norway
| | - Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| |
Collapse
|