1
|
Gransier R, Kastelein RA. Similar susceptibility to temporary hearing threshold shifts despite different audiograms in harbor porpoises and harbor seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:396-404. [PMID: 38240666 DOI: 10.1121/10.0024343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
When they are exposed to loud fatiguing sounds in the oceans, marine mammals are susceptible to hearing damage in the form of temporary hearing threshold shifts (TTSs) or permanent hearing threshold shifts. We compared the level-dependent and frequency-dependent susceptibility to TTSs in harbor seals and harbor porpoises, species with different hearing sensitivities in the low- and high-frequency regions. Both species were exposed to 100% duty cycle one-sixth-octave noise bands at frequencies that covered their entire hearing range. In the case of the 6.5 kHz exposure for the harbor seals, a pure tone (continuous wave) was used. TTS was quantified as a function of sound pressure level (SPL) half an octave above the center frequency of the fatiguing sound. The species have different audiograms, but their frequency-specific susceptibility to TTS was more similar. The hearing frequency range in which both species were most susceptible to TTS was 22.5-50 kHz. Furthermore, the frequency ranges were characterized by having similar critical levels (defined as the SPL of the fatiguing sound above which the magnitude of TTS induced as a function of SPL increases more strongly). This standardized between-species comparison indicates that the audiogram is not a good predictor of frequency-dependent susceptibility to TTS.
Collapse
Affiliation(s)
- Robin Gransier
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven, Herestraat 49, Box 721, 3000 Leuven, Belgium
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3842 CC Harderwijk, The Netherlands
| |
Collapse
|
2
|
Mulsow J, Schlundt CE, Strahan MG, Finneran JJ. Bottlenose dolphin temporary threshold shift following exposure to 10-ms impulses centered at 8 kHza). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1287-1298. [PMID: 37646472 DOI: 10.1121/10.0020726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Studies of marine mammal temporary threshold shift (TTS) from impulsive sources have typically produced small TTS magnitudes, likely due to much of the energy in tested sources lying below the subjects' range of best hearing. In this study of dolphin TTS, 10-ms impulses centered at 8 kHz were used with the goal of inducing larger magnitudes of TTS and assessing the time course of hearing recovery. Most impulses had sound pressure levels of 175-180 dB re 1 μPa, while inter-pulse interval (IPI) and total number of impulses were varied. Dolphin TTS increased with increasing cumulative sound exposure level (SEL) and there was no apparent effect of IPI for exposures with equal SEL. The lowest TTS onset was 184 dB re 1 μPa2s, although early exposures with 20-s IPI and cumulative SEL of 182-183 dB re 1 μPa2s produced respective TTS of 35 and 16 dB in two dolphins. Continued testing with higher SELs up to 191 dB re 1 μPa2s in one of those dolphins, however, failed to result in TTS greater than 14 dB. Recovery rates were similar to those from other studies with non-impulsive sources and depended on the magnitude of the initial TTS.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Carolyn E Schlundt
- Peraton Corporation, 4045 Hancock Street, Suite 210, San Diego, California 92110, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
3
|
von Benda-Beckmann AM, Ketten DR, Lam FPA, de Jong CAF, Müller RAJ, Kastelein RA. Evaluation of kurtosis-corrected sound exposure level as a metric for predicting onset of hearing threshold shifts in harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:295. [PMID: 35931542 DOI: 10.1121/10.0012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.
Collapse
Affiliation(s)
| | - D R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| | - F P A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - C A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A J Müller
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
4
|
Tougaard J, Beedholm K, Madsen PT. Thresholds for noise induced hearing loss in harbor porpoises and phocid seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:4252. [PMID: 35778178 DOI: 10.1121/10.0011560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, Marine Mammal Research, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Kristian Beedholm
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Peter T Madsen
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Hubert J, Campbell JA, Slabbekoorn H. Effects of seismic airgun playbacks on swimming patterns and behavioural states of Atlantic cod in a net pen. MARINE POLLUTION BULLETIN 2020; 160:111680. [PMID: 33181953 DOI: 10.1016/j.marpolbul.2020.111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic sound can affect fish behaviour and physiology which may affect their well-being. However, it remains a major challenge to translate such effects to consequences for fitness at an individual and population level. For this, energy budget models have been developed, but suitable data to parametrize these models are lacking. A first step towards such parametrization concerns the objective quantification of behavioural states at high resolution. We experimentally exposed individual Atlantic cod (Gadus morhua) in a net pen to the playback of seismic airgun sounds. We demonstrated that individual cod in the net pen did not change their swimming patterns immediately at the onset of the sound exposure. However, several individuals changed their time spent in three different behavioural states during the 1 h exposure. This may be translated to changes in energy expenditure and provide suitable input for energy budget models that allow predictions about fitness and population consequences.
Collapse
Affiliation(s)
- Jeroen Hubert
- Institute of Biology Leiden, Leiden University, the Netherlands.
| | | | | |
Collapse
|
6
|
Sills JM, Ruscher B, Nichols R, Southall BL, Reichmuth C. Evaluating temporary threshold shift onset levels for impulsive noise in seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2973. [PMID: 33261408 DOI: 10.1121/10.0002649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The auditory effects of single- and multiple-shot impulsive noise exposures were evaluated in a bearded seal (Erignathus barbatus). This study replicated and expanded upon recent work with related species [Reichmuth, Ghoul, Sills, Rouse, and Southall (2016). J. Acoust. Soc. Am. 140, 2646-2658]. Behavioral methods were used to measure hearing sensitivity before and immediately following exposure to underwater noise from a seismic air gun. Hearing was evaluated at 100 Hz-close to the maximum energy in the received pulse, and 400 Hz-the frequency with the highest sensation level. When no evidence of a temporary threshold shift (TTS) was found following single shots at 185 dB re 1 μPa2 s unweighted sound exposure level (SEL) and 207 dB re 1 μPa peak-to-peak sound pressure, the number of exposures was gradually increased from one to ten. Transient shifts in hearing thresholds at 400 Hz were apparent following exposure to four to ten consecutive pulses (cumulative SEL 191-195 dB re 1 μPa2 s; 167-171 dB re 1 μPa2 s with frequency weighting for phocid carnivores in water). Along with these auditory data, the effects of seismic exposures on response time, response bias, and behavior were investigated. This study has implications for predicting TTS onset following impulsive noise exposure in seals.
Collapse
Affiliation(s)
- Jillian M Sills
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Brandi Ruscher
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Ross Nichols
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Brandon L Southall
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Suite 8, Aptos, California 95003, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
7
|
Finneran JJ. Conditioned attenuation of dolphin monaural and binaural auditory evoked potentials after preferential stimulation of one ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2302. [PMID: 32359288 DOI: 10.1121/10.0001033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have demonstrated that some species of odontocetes can be conditioned to reduce hearing sensitivity when warned of an impending intense sound; however, the underlying mechanisms remain poorly understood. In the present study, conditioned hearing attenuation was elicited in two bottlenose dolphins by pairing a 10-kHz tone (the conditioned stimulus) with a more intense tone (the unconditioned stimulus) at 28 kHz. Testing was performed in air, with sounds presented via contact transducers. Hearing was assessed via noninvasive measurement of monaural auditory nerve responses (ANR) and binaural auditory brainstem responses (ABR). ABRs/ANRs were measured in response to 40-kHz tone bursts, over 2 to 3-s time intervals before and after the conditioned and unconditioned stimuli. Results showed reductions in ABR/ANR amplitude and increases in latency after pairing the warning and more intense tones. Monaural ANRs from the left and right ears were attenuated by similar amounts when the warning and more intense sounds were preferentially applied to the right ear. The data support a neural mechanism operating at the level of the cochlea and/or auditory nerve and suggest the involvement of neural projections that can affect the contralateral ear.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
8
|
Reichmuth C, Sills JM, Mulsow J, Ghoul A. Long-term evidence of noise-induced permanent threshold shift in a harbor seal (Phoca vitulina). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2552. [PMID: 31671984 DOI: 10.1121/1.5129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
In psychophysical studies of noise-induced hearing loss with marine mammals, exposure conditions are often titrated from levels of no effect to those that induce significant but recoverable loss of auditory sensitivity [temporary threshold shift (TTS)]. To examine TTS from mid-frequency noise, a harbor seal was exposed to a 4.1-kHz underwater tone that was incrementally increased in sound pressure level (SPL) and duration. The seal's hearing was evaluated at the exposure frequency and one-half octave higher (5.8 kHz) to identify the noise parameters associated with TTS onset. No reliable TTS was measured with increasing sound exposure level until the second exposure to a 60-s fatiguing tone of 181 dB re 1 μPa SPL (sound exposure level 199 dB re 1 μPa2s), after which an unexpectedly large threshold shift (>47 dB) was observed. While hearing at 4.1 kHz recovered within 48 h, there was a permanent threshold shift of at least 8 dB at 5.8 kHz. This hearing loss was evident for more than ten years. Furthermore, a residual threshold shift of 11 dB was detected one octave above the tonal exposure, at 8.2 kHz. This hearing loss persisted for more than two years prior to full recovery.
Collapse
Affiliation(s)
- Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jillian M Sills
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Asila Ghoul
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
9
|
Kastelein RA, Helder-Hoek L, Kommeren A, Covi J, Gransier R. Effect of pile-driving sounds on harbor seal (Phoca vitulina) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3583. [PMID: 29960448 DOI: 10.1121/1.5040493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seals exposed to intense sounds may suffer hearing loss. After exposure to playbacks of broadband pile-driving sounds, the temporary hearing threshold shift (TTS) of two harbor seals was quantified at 4 and 8 kHz (frequencies of the highest TTS) with a psychoacoustic technique. The pile-driving sounds had: a 127 ms pulse duration, 2760 strikes per h, a 1.3 s inter-pulse interval, a ∼9.5% duty cycle, and an average received single-strike unweighted sound exposure level (SELss) of 151 dB re 1 μPa2s. Exposure durations were 180 and 360 min [cumulative sound exposure level (SELcum): 190 and 193 dB re 1 μPa2s]. Control sessions were conducted under low ambient noise. TTS only occurred after 360 min exposures (mean TTS: seal 02, 1-4 min after sound stopped: 3.9 dB at 4 kHz and 2.4 dB at 8 kHz; seal 01, 12-16 min after sound stopped: 2.8 dB at 4 kHz and 2.6 dB at 8 kHz). Hearing recovered within 60 min post-exposure. The TTSs were small, due to the small amount of sound energy to which the seals were exposed. Biological TTS onset SELcum for the pile-driving sounds used in this study is around 192 dB re 1 μPa2s (for mean received SELss of 151 dB re 1 μPa and a duty cycle of ∼9.5%).
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Aimée Kommeren
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
10
|
Kastelein RA, Helder-Hoek L, Van de Voorde S, von Benda-Beckmann AM, Lam FPA, Jansen E, de Jong CAF, Ainslie MA. Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2430. [PMID: 29092610 DOI: 10.1121/1.5007720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 μPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Shirley Van de Voorde
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Erwin Jansen
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Michael A Ainslie
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| |
Collapse
|
11
|
Sills JM, Southall BL, Reichmuth C. The influence of temporally varying noise from seismic air guns on the detection of underwater sounds by seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:996. [PMID: 28253692 DOI: 10.1121/1.4976079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Standard audiometric data are often applied to predict how noise influences hearing. With regard to auditory masking, critical ratios-obtained using tonal signals and flat-spectrum maskers-can be combined with noise spectral density levels derived from 1/3-octave band levels to predict signal amplitudes required for detection. However, the efficacy of this conventional model of masking may vary based on features of the signal and noise in question. The ability of resource managers to quantify masking from intermittent seismic noise is relevant due to widespread geophysical exploration. To address this, spotted and ringed seals with previously measured critical ratios were trained to detect low-frequency tonal signals within seismic pulses recorded 1 and 30 km from an operational air gun array. The conventional model of masking accurately predicted the extent of masking only in certain cases. When noise amplitude varied significantly in time, the results suggested that detection was driven by higher signal-to-noise ratios within time windows shorter than the full signal duration. This study evaluates when it is appropriate to use average noise levels and critical ratios to predict auditory masking experienced by marine mammals, and suggests how masking models can be improved by incorporating time-based analyses of signals and noise.
Collapse
Affiliation(s)
- Jillian M Sills
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, California 95060, USA
| | - Brandon L Southall
- Southall Environmental Associates (SEA), Incorporated, 9099 Soquel Drive, Suite 8, Aptos, California 95003, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, California 95060, USA
| |
Collapse
|