1
|
Strohm EM, Gnyawali V, Sebastian JA, Ngunjiri R, Moore MJ, Tsai SSH, Kolios MC. Sizing biological cells using a microfluidic acoustic flow cytometer. Sci Rep 2019; 9:4775. [PMID: 30886171 PMCID: PMC6423196 DOI: 10.1038/s41598-019-40895-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
We describe a new technique that combines ultrasound and microfluidics to rapidly size and count cells in a high-throughput and label-free fashion. Using 3D hydrodynamic flow focusing, cells are streamed single file through an ultrasound beam where ultrasound scattering events from each individual cell are acquired. The ultrasound operates at a center frequency of 375 MHz with a wavelength of 4 μm; when the ultrasound wavelength is similar to the size of a scatterer, the power spectra of the backscattered ultrasound waves have distinct features at specific frequencies that are directly related to the cell size. Our approach determines cell sizes through a comparison of these distinct spectral features with established theoretical models. We perform an analysis of two types of cells: acute myeloid leukemia cells, where 2,390 measurements resulted in a mean size of 10.0 ± 1.7 μm, and HT29 colorectal cancer cells, where 1,955 measurements resulted in a mean size of 15.0 ± 2.3 μm. These results and histogram distributions agree very well with those measured from a Coulter Counter Multisizer 4. Our technique is the first to combine ultrasound and microfluidics to determine the cell size with the potential for multi-parameter cellular characterization using fluorescence, light scattering and quantitative photoacoustic techniques.
Collapse
Affiliation(s)
- Eric M Strohm
- Department of Physics, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Vaskar Gnyawali
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Joseph A Sebastian
- Department of Physics, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Robert Ngunjiri
- Department of Physics, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Michael J Moore
- Department of Physics, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St, Toronto, Canada
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, 350 Victoria St, Toronto, Canada.
- Institute for Biomedical Engineering and Science Technology, a partnership between Ryerson University and St. Michael's Hospital, M5B 1W8, Toronto, Canada.
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, M5B 1W8, Toronto, Canada.
| |
Collapse
|
2
|
Cai Y, Lu J, Li S. Direct simulation of acoustic scattering problems involving fluid-structure interaction using an efficient immersed boundary-lattice Boltzmann method. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2256. [PMID: 30404499 DOI: 10.1121/1.5063349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
An efficient immersed boundary-lattice Boltzmann method (IB-LBM) is applied to carry out the direct simulation of acoustic scattering problems involving fluid-structure interaction. In the simulation, the lattice Boltzmann method is adopted for the fluid domain, the immersed boundary method is used to handle the fluid-structure interaction and the instantaneous fluid pressure perturbation is computed to obtain the acoustic field. Compared with the conventional IB-LBMs, a force correction technique is introduced in this method to enforce the non-slip boundary conditions at the immersed boundaries and the acoustic scattering field thus can be obtained more accurately. The study of the numerical result comparison with the conventional IB-LBMs or analytical solutions is conducted on four acoustic problems, such as acoustic radiation from a pulsing cylinder, acoustic scattering from a static cylinder with pulse, or harmonic Gaussian sources and a moving two-dimensional sedimentating particle. The better efficiency of the present method is validated.
Collapse
Affiliation(s)
- Yunan Cai
- State Key Laboratory of Structural Analysis for Industrial Equipment, School of Naval Architecture, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Number 2 Linggong Road, Dalian, Liaoning, 116024, People's Republic of China
| | - Jianhua Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, School of Naval Architecture, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Number 2 Linggong Road, Dalian, Liaoning, 116024, People's Republic of China
| | - Sheng Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, School of Naval Architecture, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Number 2 Linggong Road, Dalian, Liaoning, 116024, People's Republic of China
| |
Collapse
|