1
|
Zahn MJ, Laidre KL, Stilz P, Rasmussen MH, Koblitz JC. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS One 2021; 16:e0257054. [PMID: 34499678 PMCID: PMC8428689 DOI: 10.1371/journal.pone.0257054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 μPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).
Collapse
Affiliation(s)
- Marie J Zahn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kristin L Laidre
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America.,Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, United States of America
| | - Peter Stilz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Jens C Koblitz
- Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
von Benda-Beckmann AM, Isojunno S, Zandvliet M, Ainslie MA, Wensveen PJ, Tyack PL, Kvadsheim PH, Lam FPA, Miller PJO. Modeling potential masking of echolocating sperm whales exposed to continuous 1-2 kHz naval sonar. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2908. [PMID: 33940877 DOI: 10.1121/10.0004769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Modern active sonar systems can (almost) continuously transmit and receive sound, which can lead to more masking of important sounds for marine mammals than conventional pulsed sonar systems transmitting at a much lower duty cycle. This study investigated the potential of 1-2 kHz active sonar to mask echolocation-based foraging of sperm whales by modeling their echolocation detection process. Continuous masking for an echolocating sperm whale facing a sonar was predicted for sonar sound pressure levels of 160 dB re 1 μPa2, with intermittent masking at levels of 120 dB re 1 μPa2, but model predictions strongly depended on the animal orientation, harmonic content of the sonar, click source level, and target strength of the prey. The masking model predicted lower masking potential of buzz clicks compared to regular clicks, even though the energy source level is much lower. For buzz clicks, the lower source level is compensated for by the reduced two-way propagation loss to nearby prey during buzzes. These results help to predict what types of behavioral changes could indicate masking in the wild. Several key knowledge gaps related to masking potential of sonar in echolocating odontocetes were identified that require further investigation to assess the significance of masking.
Collapse
Affiliation(s)
- A M von Benda-Beckmann
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - S Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - M Zandvliet
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - M A Ainslie
- JASCO Applied Sciences (Deutschland) GmbH, Eschborn, Germany
| | - P J Wensveen
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavik, Iceland
| | - P L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - P H Kvadsheim
- Sensor and Surveillance Systems, Norwegian Defense Research Establishment (FFI), NO-3191 Horten, Norway
| | - F P A Lam
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - P J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| |
Collapse
|
3
|
Beedholm K, Malinka C, Ladegaard M, Madsen PT. Do echolocating toothed whales direct their acoustic gaze on- or off-target in a static detection task? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:581. [PMID: 33514151 DOI: 10.1121/10.0003357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Echolocating mammals produce directional sound beams with high source levels to improve echo-to-noise ratios and reduce clutter. Recent studies have suggested that the differential spectral gradients of such narrow beams are exploited to facilitate target localization by pointing the beam slightly off targets to maximize the precision of angular position estimates [maximizing bearing Fisher information (FI)]. Here, we test the hypothesis that echolocating toothed whales focus their acoustic gaze askew during target detection to maximize spectral cues by investigating the acoustic gaze direction of two trained delphinids (Tursiops truncatus and Pseudorca crassidens) echolocating to detect an aluminum cylinder behind a hydrophone array in a go/no-go paradigm. The animals rarely placed their beam axis directly on the target, nor within the narrow range around the off-axis angle that maximizes FI. However, the target was, for each trial, ensonified within the swath of the half-power beam width, and hence we conclude that the animals solved the detection task using a strategy that seeks to render high echo-to-noise ratios rather than maximizing bearing FI. We posit that biosonar beam adjustment and acoustic gaze strategies are likely task-dependent and that maximizing bearing FI by pointing off-axis does not improve target detection performance.
Collapse
Affiliation(s)
- Kristian Beedholm
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Chloe Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
4
|
Smith AB, Pacini AF, Nachtigall PE, Laule GE, Aragones LV, Magno C, Suarez LJA. Transmission beam pattern and dynamics of a spinner dolphin (Stenella longirostris). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3595. [PMID: 31255135 DOI: 10.1121/1.5111347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Toothed whales possess a sophisticated biosonar system by which ultrasonic clicks are projected in a highly directional transmission beam. Beam directivity is an important biosonar characteristic that reduces acoustic clutter and increases the acoustic detection range. This study measured click characteristics and the transmission beam pattern from a small odontocete, the spinner dolphin (Stenella longirostis). A formerly stranded individual was rehabilitated and trained to station underwater in front of a 16-element hydrophone array. On-axis clicks showed a mean duration of 20.1 μs, with mean peak and centroid frequencies of 58 and 64 kHz [standard deviation (s.d.) ±30 and ±12 kHz], respectively. Clicks were projected in an oval, vertically compressed beam, with mean vertical and horizontal beamwidths of 14.5° (s.d. ± 3.9) and 16.3° (s.d. ± 4.6), respectively. Directivity indices ranged from 14.9 to 27.4 dB, with a mean of 21.7 dB, although this likely represents a broader beam than what is normally produced by wild individuals. A click subset with characteristics more similar to those described for wild individuals exhibited a mean directivity index of 23.3 dB. Although one of the broadest transmission beams described for a dolphin, it is similar to other small bodied odontocetes.
Collapse
Affiliation(s)
- Adam B Smith
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Aude F Pacini
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Paul E Nachtigall
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Gail E Laule
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| | - Lemnuel V Aragones
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Carlo Magno
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| | - Leo J A Suarez
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| |
Collapse
|