1
|
Mai G, Howell P. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss. Hear Res 2023; 427:108647. [PMID: 36436293 DOI: 10.1016/j.heares.2022.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Ageing affects auditory neural phase-locked activities which could increase the challenges experienced during speech-in-noise (SiN) perception by older adults. However, evidence for how ageing affects SiN perception through these phase-locked activities is still lacking. It is also unclear whether influences of ageing on phase-locked activities in response to different acoustic properties have similar or different mechanisms to affect SiN perception. The present study addressed these issues by measuring early-stage phase-locked encoding of speech under quiet and noisy backgrounds (speech-shaped noise (SSN) and multi-talker babbles) in adults across a wide age range (19-75 years old). Participants passively listened to a repeated vowel whilst the frequency-following response (FFR) to fundamental frequency that has primary subcortical sources and cortical phase-locked response to slowly-fluctuating acoustic envelopes were recorded. We studied how these activities are affected by age and age-related hearing loss and how they are related to SiN performances (word recognition in sentences in noise). First, we found that the effects of age and hearing loss differ for the FFR and slow-envelope phase-locking. FFR was significantly decreased with age and high-frequency (≥ 2 kHz) hearing loss but increased with low-frequency (< 2 kHz) hearing loss, whilst the slow-envelope phase-locking was significantly increased with age and hearing loss across frequencies. Second, potential relationships between the types of phase-locked activities and SiN perception performances were also different. We found that the FFR and slow-envelope phase-locking positively corresponded to SiN performance under multi-talker babbles and SSN, respectively. Finally, we investigated how age and hearing loss affected SiN perception through phase-locked activities via mediation analyses. We showed that both types of activities significantly mediated the relation between age/hearing loss and SiN perception but in distinct manners. Specifically, FFR decreased with age and high-frequency hearing loss which in turn contributed to poorer SiN performance but increased with low-frequency hearing loss which in turn contributed to better SiN performance under multi-talker babbles. Slow-envelope phase-locking increased with age and hearing loss which in turn contributed to better SiN performance under both SSN and multi-talker babbles. Taken together, the present study provided evidence for distinct neural mechanisms of early-stage auditory phase-locked encoding of different acoustic properties through which ageing affects SiN perception.
Collapse
Affiliation(s)
- Guangting Mai
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK; Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; Department of Experimental Psychology, University College London, London WC1H 0AP, UK.
| | - Peter Howell
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
2
|
Mai G, Howell P. Causal Relationship between the Right Auditory Cortex and Speech-Evoked Envelope-Following Response: Evidence from Combined Transcranial Stimulation and Electroencephalography. Cereb Cortex 2021; 32:1437-1454. [PMID: 34424956 PMCID: PMC8971082 DOI: 10.1093/cercor/bhab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Speech-evoked envelope-following response (EFR) reflects brain encoding of speech periodicity that serves as a biomarker for pitch and speech perception and various auditory and language disorders. Although EFR is thought to originate from the subcortex, recent research illustrated a right-hemispheric cortical contribution to EFR. However, it is unclear whether this contribution is causal. This study aimed to establish this causality by combining transcranial direct current stimulation (tDCS) and measurement of EFR (pre- and post-tDCS) via scalp-recorded electroencephalography. We applied tDCS over the left and right auditory cortices in right-handed normal-hearing participants and examined whether altering cortical excitability via tDCS causes changes in EFR during monaural listening to speech syllables. We showed significant changes in EFR magnitude when tDCS was applied over the right auditory cortex compared with sham stimulation for the listening ear contralateral to the stimulation site. No such effect was found when tDCS was applied over the left auditory cortex. Crucially, we further observed a hemispheric laterality where aftereffect was significantly greater for tDCS applied over the right than the left auditory cortex in the contralateral ear condition. Our finding thus provides the first evidence that validates the causal relationship between the right auditory cortex and EFR.
Collapse
Affiliation(s)
- Guangting Mai
- Hearing Theme, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Peter Howell
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
3
|
Seol HY, Park S, Ji YS, Hong SH, Moon IJ. Impact of hearing aid noise reduction algorithms on the speech-evoked auditory brainstem response. Sci Rep 2020; 10:10773. [PMID: 32612140 PMCID: PMC7330026 DOI: 10.1038/s41598-020-66970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2018] [Accepted: 05/27/2020] [Indexed: 11/26/2022] Open
Abstract
The purposes of this study are to investigate the neural representation of a speech stimulus in the auditory system of individuals with normal hearing (NH) and those with hearing aids (HAs) and to explore the impact of noise reduction algorithms (NR) on auditory brainstem response to complex sounds (cABR). Twenty NH individuals and 28 HA users completed puretone audiometry, the Korean version of the Hearing in Noise Test (K-HINT), and cABR. In 0 and +5 dB signal-to-noise ratios (SNRs), the NH group was tested in /da/ only (quiet) and /da/ with white noise (WN) conditions while the HA group was tested in /da/ only, /da/ WN, /da/ WN NR ON, and /da/ WN NR OFF conditions. Significant differences were observed between /da/ only and /da/ WN conditions for F0 in both groups, but no SNR effect was observed for both groups. Findings of this study are consistent with previous literature that diminished cABR amplitudes indicate reduced representation of sounds in the auditory system. This is the first to examine the effect of a specific HA feature on cABR responses.
Collapse
Affiliation(s)
- Hye Yoon Seol
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - Suyeon Park
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - Yoon Sang Ji
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - Sung Hwa Hong
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
- Department of Otolaryngology-Head & Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Il Joon Moon
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea.
- Department of Otolaryngology-Head & Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Richard C, Neel ML, Jeanvoine A, Connell SM, Gehred A, Maitre NL. Characteristics of the Frequency-Following Response to Speech in Neonates and Potential Applicability in Clinical Practice: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1618-1635. [PMID: 32407639 DOI: 10.1044/2020_jslhr-19-00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Purpose We sought to critically analyze and evaluate published evidence regarding feasibility and clinical potential for predicting neurodevelopmental outcomes of the frequency-following responses (FFRs) to speech recordings in neonates (birth to 28 days). Method A systematic search of MeSH terms in the Cumulative Index to Nursing and Allied HealthLiterature, Embase, Google Scholar, Ovid Medline (R) and E-Pub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Web of Science, SCOPUS, COCHRANE Library, and ClinicalTrials.gov was performed. Manual review of all items identified in the search was performed by two independent reviewers. Articles were evaluated based on the level of methodological quality and evidence according to the RTI item bank. Results Seven articles met inclusion criteria. None of the included studies reported neurodevelopmental outcomes past 3 months of age. Quality of the evidence ranged from moderate to high. Protocol variations were frequent. Conclusions Based on this systematic review, the FFR to speech can capture both temporal and spectral acoustic features in neonates. It can accurately be recorded in a fast and easy manner at the infant's bedside. However, at this time, further studies are needed to identify and validate which FFR features could be incorporated as an addition to standard evaluation of infant sound processing evaluation in subcortico-cortical networks. This review identifies the need for further research focused on identifying specific features of the neonatal FFRs, those with predictive value for early childhood outcomes to help guide targeted early speech and hearing interventions.
Collapse
Affiliation(s)
- Céline Richard
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland
| | - Mary Lauren Neel
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Arnaud Jeanvoine
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Sharon Mc Connell
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Alison Gehred
- Medical Library Division, Nationwide Children's Hospital, Columbus, OH
| | - Nathalie L Maitre
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
BinKhamis G, Elia Forte A, Reichenbach T, O'Driscoll M, Kluk K. Speech Auditory Brainstem Responses in Adult Hearing Aid Users: Effects of Aiding and Background Noise, and Prediction of Behavioral Measures. Trends Hear 2019; 23:2331216519848297. [PMID: 31264513 PMCID: PMC6607564 DOI: 10.1177/2331216519848297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
Abstract
Evaluation of patients who are unable to provide behavioral responses on standard clinical measures is challenging due to the lack of standard objective (non-behavioral) clinical audiological measures that assess the outcome of an intervention (e.g., hearing aids). Brainstem responses to short consonant-vowel stimuli (speech-auditory brainstem responses [speech-ABRs]) have been proposed as a measure of subcortical encoding of speech, speech detection, and speech-in-noise performance in individuals with normal hearing. Here, we investigated the potential application of speech-ABRs as an objective clinical outcome measure of speech detection, speech-in-noise detection and recognition, and self-reported speech understanding in 98 adults with sensorineural hearing loss. We compared aided and unaided speech-ABRs, and speech-ABRs in quiet and in noise. In addition, we evaluated whether speech-ABR F0 encoding (obtained from the complex cross-correlation with the 40 ms [da] fundamental waveform) predicted aided behavioral speech recognition in noise or aided self-reported speech understanding. Results showed that (a) aided speech-ABRs had earlier peak latencies, larger peak amplitudes, and larger F0 encoding amplitudes compared to unaided speech-ABRs; (b) the addition of background noise resulted in later F0 encoding latencies but did not have an effect on peak latencies and amplitudes or on F0 encoding amplitudes; and (c) speech-ABRs were not a significant predictor of any of the behavioral or self-report measures. These results show that speech-ABR F0 encoding is not a good predictor of speech-in-noise recognition or self-reported speech understanding with hearing aids. However, our results suggest that speech-ABRs may have potential for clinical application as an objective measure of speech detection with hearing aids.
Collapse
Affiliation(s)
- Ghada BinKhamis
- 1 Manchester Centre for Audiology and Deafness, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,2 Department of Communication and Swallowing Disorders, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Antonio Elia Forte
- 3 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tobias Reichenbach
- 4 Department of Bioengineering, Centre for Neurotechnology, Imperial College London, London, UK
| | - Martin O'Driscoll
- 1 Manchester Centre for Audiology and Deafness, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,5 Manchester Auditory Implant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Karolina Kluk
- 1 Manchester Centre for Audiology and Deafness, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Ross B, Dobri S, Schumann A. Speech-in-noise understanding in older age: The role of inhibitory cortical responses. Eur J Neurosci 2019; 51:891-908. [PMID: 31494988 DOI: 10.1111/ejn.14573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2019] [Revised: 07/23/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Studies of central auditory processing underlying speech-in-noise (SIN) recognition in aging have mainly concerned the degrading neural representation of speech sound in the auditory brainstem and cortex. Less attention has been paid to the aging-related decline of inhibitory function, which reduces the ability to suppress distraction from irrelevant sensory input. In a response suppression paradigm, young and older adults listened to sequences of three short sounds during MEG recording. The amplitudes of the cortical P30 response and the 40-Hz transient gamma response were compared with age, hearing loss and SIN performance. Sensory gating, indicated by the P30 amplitude ratio between the last and the first responses, was reduced in older compared to young listeners. Sensory gating was correlated with age in the older adults but not with hearing loss nor with SIN understanding. The transient gamma response expressed less response suppression. However, the gamma amplitude increased with age and SIN loss. Comparisons of linear multi-variable modeling showed a stronger brain-behavior relationship between the gamma amplitude and SIN performance than between gamma and age or hearing loss. The findings support the hypothesis that aging-related changes in the balance between inhibitory and excitatory neural mechanisms modify the generation of gamma oscillations, which impacts on perceptual binding and consequently on SIN understanding abilities. In conclusion, SIN recognition in older age is less affected by central auditory processing at the level of sensation, indicated by sensory gating, but is strongly affected at the level of perceptual organization, indicated by the correlation with the gamma responses.
Collapse
Affiliation(s)
- Bernhard Ross
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department for Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Simon Dobri
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department for Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Annette Schumann
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada
| |
Collapse
|
7
|
Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. Neuroimage 2019; 189:734-744. [DOI: 10.1016/j.neuroimage.2019.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 01/20/2019] [Indexed: 01/29/2023] Open
|