1
|
Zhang Y, Johannesen PT, Molaee-Ardekani B, Wijetillake A, Attili Chiea R, Hasan PY, Segovia-Martínez M, Lopez-Poveda EA. Comparison of Performance for Cochlear-Implant Listeners Using Audio Processing Strategies Based on Short-Time Fast Fourier Transform or Spectral Feature Extraction. Ear Hear 2024:00003446-990000000-00339. [PMID: 39288360 DOI: 10.1097/aud.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVES We compared sound quality and performance for a conventional cochlear-implant (CI) audio processing strategy based on short-time fast-Fourier transform (Crystalis) and an experimental strategy based on spectral feature extraction (SFE). In the latter, the more salient spectral features (acoustic events) were extracted and mapped into the CI stimulation electrodes. We hypothesized that (1) SFE would be superior to Crystalis because it can encode acoustic spectral features without the constraints imposed by the short-time fast-Fourier transform bin width, and (2) the potential benefit of SFE would be greater for CI users who have less neural cross-channel interactions. DESIGN To examine the first hypothesis, 6 users of Oticon Medical Digisonic SP CIs were tested in a double-blind design with the SFE and Crystalis strategies on various aspects: word recognition in quiet, speech-in-noise reception threshold (SRT), consonant discrimination in quiet, listening effort, melody contour identification (MCI), and subjective sound quality. Word recognition and SRTs were measured on the first and last day of testing (4 to 5 days apart) to assess potential learning and/or acclimatization effects. Other tests were run once between the first and last testing day. Listening effort was assessed by measuring pupil dilation. MCI involved identifying a five-tone contour among five possible contours. Sound quality was assessed subjectively using the multiple stimulus with hidden reference and anchor (MUSHRA) paradigm for sentences, music, and ambient sounds. To examine the second hypothesis, cross-channel interaction was assessed behaviorally using forward masking. RESULTS Word recognition was similar for the two strategies on the first day of testing and improved for both strategies on the last day of testing, with Crystalis improving significantly more. SRTs were worse with SFE than Crystalis on the first day of testing but became comparable on the last day of testing. Consonant discrimination scores were higher for Crystalis than for the SFE strategy. MCI scores and listening effort were not substantially different across strategies. Subjective sound quality scores were lower for the SFE than for the Crystalis strategy. The difference in performance with SFE and Crystalis was greater for CI users with higher channel interaction. CONCLUSIONS CI-user performance was similar with the SFE and Crystalis strategies. Longer acclimatization times may be required to reveal the full potential of the SFE strategy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Research and Technology, Oticon Medical, Vallauris, France
| | - Peter T Johannesen
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Aswin Wijetillake
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Pierre-Yves Hasan
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Enrique A Lopez-Poveda
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Lopez-Poveda EA, Eustaquio-Martín A, Victoriano FMS. Binaural pre-processing for contralateral sound field attenuation and improved speech-in-noise recognition. Hear Res 2022; 418:108469. [DOI: 10.1016/j.heares.2022.108469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/04/2022]
|
3
|
Divided listening in the free field becomes asymmetric when acoustic cues are limited. Hear Res 2022; 416:108444. [DOI: 10.1016/j.heares.2022.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
|
4
|
Huang EHH, Wu CM, Lin HC. Combination and Comparison of Sound Coding Strategies Using Cochlear Implant Simulation With Mandarin Speech. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2407-2416. [PMID: 34767509 DOI: 10.1109/tnsre.2021.3128064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three cochlear implant (CI) sound coding strategies were combined in the same signal processing path and compared for speech intelligibility with vocoded Mandarin sentences. The three CI coding strategies, biologically-inspired hearing aid algorithm (BioAid), envelope enhancement (EE), and fundamental frequency modulation (F0mod), were combined with the advanced combination encoder (ACE) strategy. Hence, four singular coding strategies and four combinational coding strategies were derived. Mandarin sentences with speech-shape noise were processed using these coding strategies. Speech understanding of vocoded Mandarin sentences was evaluated using short-time objective intelligibility (STOI) and subjective sentence recognition tests with normal-hearing listeners. For signal-to-noise ratios at 5 dB or above, the EE strategy had slightly higher average scores in both STOI and listening tests compared to ACE. The addition of EE to BioAid slightly increased the mean scores for BioAid+EE, which was the combination strategy with the highest scores in both objective and subjective speech intelligibility. The benefits of BioAid, F0mod, and the four combinational coding strategies were not observed in CI simulation. The findings of this study may be useful for the future design of coding strategies and related studies with Mandarin.
Collapse
|
5
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
6
|
Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Gorospe JM, Polo López R, Gutiérrez Revilla MA, Schatzer R, Nopp P, Stohl JS. Speech-in-Noise Recognition With More Realistic Implementations of a Binaural Cochlear-Implant Sound Coding Strategy Inspired by the Medial Olivocochlear Reflex. Ear Hear 2021; 41:1492-1510. [PMID: 33136626 PMCID: PMC7722463 DOI: 10.1097/aud.0000000000000880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Cochlear implant (CI) users continue to struggle understanding speech in noisy environments with current clinical devices. We have previously shown that this outcome can be improved by using binaural sound processors inspired by the medial olivocochlear (MOC) reflex, which involve dynamic (contralaterally controlled) rather than fixed compressive acoustic-to-electric maps. The present study aimed at investigating the potential additional benefits of using more realistic implementations of MOC processing. DESIGN Eight users of bilateral CIs and two users of unilateral CIs participated in the study. Speech reception thresholds (SRTs) for sentences in competition with steady state noise were measured in unilateral and bilateral listening modes. Stimuli were processed through two independently functioning sound processors (one per ear) with fixed compression, the current clinical standard (STD); the originally proposed MOC strategy with fast contralateral control of compression (MOC1); a MOC strategy with slower control of compression (MOC2); and a slower MOC strategy with comparatively greater contralateral inhibition in the lower-frequency than in the higher-frequency channels (MOC3). Performance with the four strategies was compared for multiple simulated spatial configurations of the speech and noise sources. Based on a previously published technical evaluation of these strategies, we hypothesized that SRTs would be overall better (lower) with the MOC3 strategy than with any of the other tested strategies. In addition, we hypothesized that the MOC3 strategy would be advantageous over the STD strategy in listening conditions and spatial configurations where the MOC1 strategy was not. RESULTS In unilateral listening and when the implant ear had the worse acoustic signal-to-noise ratio, the mean SRT was 4 dB worse for the MOC1 than for the STD strategy (as expected), but it became equal or better for the MOC2 or MOC3 strategies than for the STD strategy. In bilateral listening, mean SRTs were 1.6 dB better for the MOC3 strategy than for the STD strategy across all spatial configurations tested, including a condition with speech and noise sources colocated at front where the MOC1 strategy was slightly disadvantageous relative to the STD strategy. All strategies produced significantly better SRTs for spatially separated than for colocated speech and noise sources. A statistically significant binaural advantage (i.e., better mean SRTs across spatial configurations and participants in bilateral than in unilateral listening) was found for the MOC2 and MOC3 strategies but not for the STD or MOC1 strategies. CONCLUSIONS Overall, performance was best with the MOC3 strategy, which maintained the benefits of the originally proposed MOC1 strategy over the STD strategy for spatially separated speech and noise sources and extended those benefits to additional spatial configurations. In addition, the MOC3 strategy provided a significant binaural advantage, which did not occur with the STD or the original MOC1 strategies.
Collapse
Affiliation(s)
- Enrique A. Lopez-Poveda
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Eustaquio-Martín
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Milagros J. Fumero
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - José M. Gorospe
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
- Unidad de Foniatría, Logopedia y Audiología, Servicio de Otorrinolaringología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Rubén Polo López
- Servicio de Otorrinolaringología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Joshua S. Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, North Carolina, USA
| |
Collapse
|
7
|
Fumero MJ, Eustaquio-Martín A, Gorospe JM, Polo López R, Gutiérrez Revilla MA, Lassaletta L, Schatzer R, Nopp P, Stohl JS, Lopez-Poveda EA. A state-of-the-art implementation of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hear Res 2021; 409:108320. [PMID: 34348202 DOI: 10.1016/j.heares.2021.108320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Cochlear implant (CI) users find it hard and effortful to understand speech in noise with current devices. Binaural CI sound processing inspired by the contralateral medial olivocochlear (MOC) reflex (an approach termed the 'MOC strategy') can improve speech-in-noise recognition for CI users. All reported evaluations of this strategy, however, disregarded automatic gain control (AGC) and fine-structure (FS) processing, two standard features in some current CI devices. To better assess the potential of implementing the MOC strategy in contemporary CIs, here, we compare intelligibility with and without MOC processing in combination with linked AGC and FS processing. Speech reception thresholds (SRTs) were compared for an FS and a MOC-FS strategy for sentences in steady and fluctuating noises, for various speech levels, in bilateral and unilateral listening modes, and for multiple spatial configurations of the speech and noise sources. Word recall scores and verbal response times in a word recognition test (two proxies for listening effort) were also compared for the two strategies in quiet and in steady noise at 5 dB signal-to-noise ratio (SNR) and the individual SRT. In steady noise, mean SRTs were always equal or better with the MOC-FS than with the standard FS strategy, both in bilateral (the mean and largest improvement across spatial configurations and speech levels were 0.8 and 2.2 dB, respectively) and unilateral listening (mean and largest improvement of 1.7 and 2.1 dB, respectively). In fluctuating noise and in bilateral listening, SRTs were equal for the two strategies. Word recall scores and verbal response times were not significantly affected by the test SNR or the processing strategy. Results show that MOC processing can be combined with linked AGC and FS processing. Compared to using FS processing alone, combined MOC-FS processing can improve speech intelligibility in noise without affecting word recall scores or verbal response times.
Collapse
Affiliation(s)
- Milagros J Fumero
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain.; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca Salamanca 37007 Spain
| | - Almudena Eustaquio-Martín
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain.; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca Salamanca 37007 Spain
| | - José M Gorospe
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain.; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca Salamanca 37007 Spain; Servicio de Otorrinolaringología, Hospital Universitario de Salamanca, Salamanca 37007 Spain
| | - Rubén Polo López
- Servicio de Otorrinolaringología, Hospital Universitario Ramón y Cajal, Madrid 28034 Spain
| | | | - Luis Lassaletta
- Servicio de Otorrinolaringología, Hospital Universitario La Paz, Madrid 28046 Spain; IdiPAZ Research Institute, Madrid, Spain; Biomedical Research Networking Centre on Rare Diseases (CIBERER-U761), Institute of Health Carlos III, Madrid, Spain
| | | | | | - Joshua S Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, NC, USA
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain.; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca Salamanca 37007 Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37007 Spain.
| |
Collapse
|
8
|
Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Stohl JS, Schatzer R, Nopp P, Wolford RD, Gorospe JM, Polo R, Revilla AG, Wilson BS. Lateralization of virtual sound sources with a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hear Res 2019; 379:103-116. [DOI: 10.1016/j.heares.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|