1
|
Xiang G, Li D, Chen J, Mishra A, Sankin G, Zhao X, Tang Y, Wang K, Yao J, Zhong P. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2023; 35:033303. [PMID: 36896246 PMCID: PMC9986958 DOI: 10.1063/5.0139741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Recent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage. We vary the standoff distance (SD) between the fiber tip and solid boundary under parallel fiber alignment and observe several distinctive features in bubble dynamics. First, long pulsed laser irradiation and solid boundary interaction create an elongated "pear-shaped" bubble that collapses asymmetrically and forms multiple jets in sequence. Second, unlike nanosecond laser-induced cavitation bubbles, jet impact on solid boundary generates negligible pressure transients and causes no direct damage. A non-circular toroidal bubble forms, particularly following the primary and secondary bubble collapses at SD = 1.0 and 3.0 mm, respectively. We observe three intensified bubble collapses with strong shock wave emissions: the intensified bubble collapse by shock wave, the ensuing reflected shock wave from the solid boundary, and self-intensified collapse of an inverted "triangle-shaped" or "horseshoe-shaped" bubble. Third, high-speed shadowgraph imaging and 3D-PCM confirm that the shock origins from the distinctive bubble collapse form either two discrete spots or a "smiling-face" shape. The spatial collapse pattern is consistent with the similar BegoStone surface damage, suggesting that the shockwave emissions during the intensified asymmetric collapse of the pear-shaped bubble are decisive for the solid damage.
Collapse
Affiliation(s)
- Gaoming Xiang
- Thomas Lord Department of Mechanical and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Daiwei Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Junqin Chen
- Thomas Lord Department of Mechanical and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Arpit Mishra
- Thomas Lord Department of Mechanical and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Georgy Sankin
- Thomas Lord Department of Mechanical and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Xuning Zhao
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Yuqi Tang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Kevin Wang
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Pei Zhong
- Thomas Lord Department of Mechanical and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
2
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Wu Y, Chen W, Zhang L, Shen Y, Zhao G. Pulsation, translation and P 1 deformation of two aspherical bubbles in liquid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:888. [PMID: 35232095 DOI: 10.1121/10.0009392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
In this work, the interactions between the axial translational motions and aspherical oscillations of two gas bubbles in an incompressible liquid are considered. Representing the surface function by the Legendre polynomial of first order, we derive a dynamic model to describe the motions of two aspherical bubbles in Lagrangian mechanics. An apple-shaped bubble from simulations based on the model can be well consistent with known experimental observation. The bubble appears as the shape of a sphere at maximum expansion. The maximum asymmetry of the bubbles occurs during collapse. The surface tension is a key factor to stable oscillatory deformation. It is also found that the aspherical amplitudes of two bubbles decrease with increasing distance or decreasing driving pressure.
Collapse
Affiliation(s)
- Yaorong Wu
- The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093, China
| | - Weizhong Chen
- The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093, China
| | - Lingling Zhang
- The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093, China
| | - Yang Shen
- The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093, China
| | - Guoying Zhao
- The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Wu P, Wang X, Lin W, Bai L. Acoustic characterization of cavitation intensity: A review. ULTRASONICS SONOCHEMISTRY 2022; 82:105878. [PMID: 34929549 PMCID: PMC8799601 DOI: 10.1016/j.ultsonch.2021.105878] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
Cavitation intensity is used to describe the activity of cavitation, and several methods are developed to identify the intensity of cavitation. This work aimed to provide an overview and discussion of the several existing characterization methods for cavitation intensity, three acoustic approaches for charactering cavitation were discussed in detail. It was showed that cavitation noise spectrum is too complex and there are some differences and disputes on the characterization of cavitation intensity by cavitation noise. In this review, we recommended a total cavitation noise intensity estimated via the integration of real cavitation noise spectrum over full frequency domain instead of artificially adding inaccurate filtering processing.
Collapse
Affiliation(s)
- Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuming Wang
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Bai
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|