1
|
Calaway C, Walls K, Levitt H, Caplan J, Mann B, Martinez K, Gastaldo R, Haq I, Signorile JF. Velocity-Based-Training Frequency Impacts Changes in Muscle Morphology, Neuromuscular Performance, and Functional Capability in Persons With Parkinson's Disease. J Strength Cond Res 2025; 39:99-106. [PMID: 39316787 DOI: 10.1519/jsc.0000000000004951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ABSTRACT Calaway, C, Walls, K, Levitt, H, Caplan, J, Mann, B, Martinez, K, Gastaldo, R, Haq, I, and Signorile, JF. Velocity-based-training frequency impacts changes in muscle morphology, neuromuscular performance, and functional capability in persons with Parkinson's disease. J Strength Cond Res 39(1): 99-106, 2025-Velocity-based training (VBT) positively impacts muscle morphology and performance in persons with Parkinson's disease (PD); however, optimal training frequencies for VBT in patients with PD remain undetermined. Changes in ultrasound-determined muscle thickness (MT) and echo intensity (EI)-derived muscle quality of the rectus femoris (RF) and vastus lateralis (VL), neuromuscular performance, and functional capacity were examined following 2 VBT frequencies (2-3 d·wk -1 ) using 30% velocity loss thresholds for 12 weeks. Neuromuscular performance was assessed using computerized pneumatic resistance machines. For each variable, 2 (time) × 2 (group) repeated-measures analyses of variance (ANOVA) were used to determine significant main effects and interactions. Significant time effects were seen for MT and EI of all muscles ( p < 0.05). Muscle thickness improvements included right VL (RVL) (0.171 ± 0.065 cm; p = 0.019), left VL (LVL) (0.214 ± 0.101 cm; p = 0.049), right RF (RRF) (0.194 ± 0.077 cm; p = 0.023), and left RF (LRF) (0.318 ± 0.109 cm; p = 0.010). For EI, improvements occurred in RVL (-18.688 ± 3.600; p = <0.001), LVL (-10.959 ± 4.894; p = 0.040), RRF (-9.516 ± 3.537; p = 0.016), and LRF (-9.018 ± 3.444; p = 0.019). Time effects were seen for leg-press 1-repetition maximum and peak power ( p < 0.01) and habitual walking speed ( p = 0.022), with a group by time interaction for maximal gait speed favoring the 3 d·wk -1 condition (∆0.15 m·s -1 , p = 0.002). The results indicate that VBT at 2 or 3 d·wk -1 can significantly improve muscle morphology, neuromuscular performance, and functional capability in patients with PD; however, improvements in maximal gait speed require 3 d·wk -1 . These findings provide flexibility when developing exercise prescriptions for patients with PD.
Collapse
Affiliation(s)
- Caleb Calaway
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Kelsey Walls
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Harvey Levitt
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Joseph Caplan
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Bryan Mann
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, Texas; and
| | - Kylie Martinez
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Rachel Gastaldo
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Ihtsham Haq
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| |
Collapse
|
2
|
Dragutinovic B, Moser F, Feuerbacher JF, Schumann M. Non-Local Muscle Fatigue Impairs Mean Propulsive Velocity During Strength Loading in Strength-Trained Men. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:697-704. [PMID: 38306694 DOI: 10.1080/02701367.2023.2298455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Purpose: This study examined the acute influence of a bench press (BP) loading on the explosive squat (SQ) performance and vice versa. Methods: Nineteen strength-trained men completed 2 experimental sessions consisting of either a SQ+BP loading or a BP+SQ loading with 3 × 5 + 3 × 3 repetitions at 80% of the 1-repetition maximum in a randomized order. SQ and BP mean propulsive velocity (MPV) were assessed during both loadings, at baseline (T0) as well as immediately after the first (T1) and second strength loading (T2). Results: Both BP and SQ MPV decreased between T0 and T1 in SQ+BP (-6.13 ± 6.13%, p = .014, g = 0.485 and -9.11 ± 7.23%, p < .001, g = 0.905, respectively) and BP+SQ (-15.15 ± 7.69%, p < .001, g = 1.316 and -7.18 ± 6.16%, p < .001, g = 0.724, respectively). Mean BP MPV was lower in set 2 to set 6 in SQ+BP when compared to BP+SQ (-7.90% - 9.88%, all p < .05, g = 0.523-0.808). Mean SQ MPV was lower in set 1 and set 4 in BP+SQ when compared to SQ+BP (-4.94% - 5.22%, all p < .001, g = 0.329-0.362). Conclusions: These results demonstrate that the presence of non-local muscle fatigue affects the movement velocity. Therefore, if a training program aims to perform strength training exercises with maximal movement velocity, it is essential to carefully evaluate whether upper and lower body exercises should be carried out within close proximity.
Collapse
|
3
|
Calaway CC, Martinez KJ, Calzada Bichili AR, Caplan JH, Milgrim WP, Mann JB, Haq I, Signorile JF. Velocity-Based Training Affects Function, Strength, and Power in Persons with Parkinson's Disease. J Strength Cond Res 2024:00124278-990000000-00508. [PMID: 39074248 DOI: 10.1519/jsc.0000000000004874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Calaway, CC, Martinez, KJ, Calzada Bichili, AR, Caplan, JH, Milgrim, WP, Mann, JB, Haq, I, and Signorile, JF. Velocity-based training affects function, strength, and power in persons with Parkinson's disease. J Strength Cond Res XX(X): 000-000, 2024-Velocity-based training (VBT) is commonly associated with high-level athletes. No study has examined the effects of VBT on performance in persons with Parkinson's disease (PD). The objective of the study was to compare the effects of 10 and 30% velocity-loss threshold protocols on changes in functional performance, strength, and power in persons with PD after 12 weeks of supervised VBT, 3 days per week. Twenty-one subjects with PD (72.9 ± 5.9 y) were randomly assigned to the 10% or 30% velocity-loss threshold group and performed the 6-m walk test at habitual and maximal gait speed (6MWTMax), the 5 time sit-to-stand test (5 × STS), 1 repetition maximum (1RM), and peak power (PP) testing for the chest press (CP) and leg press (LP) exercise. A mixed ANOVA with significance was set a priori at 0.05 revealed that significant time effects were seen for the 6MWT at maximal speed (MDiff ± SD = 0.22 ± 0.04 m·s-1, p < 0.001), 5-time sit-to-stand time (-1.48 ± 0.45 seconds, p = 0.005) and power (75.5 ± 22.7 W, p = 0.005), 1RM for CP (5.1 ± 1.1 kg, p < 0.001) and LP (12.6 ± 3.7 kg, p = 0.005), and LP-PP (43.6 ± 13.2 W, p = 0.006). Secondary analyses revealed time effects for the load at which PP was achieved for the CP exercise. A Wilcoxon signed-rank test revealed no significant differences in the percentage of 1RM at which PP was achieved for either condition. Results indicate that VBT is an effective training modality for improving functional capacity, strength, and power in persons with PD; however, shifts in force-velocity relationships were not evidenced.
Collapse
Affiliation(s)
- Caleb C Calaway
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Kylie J Martinez
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Ana Raquel Calzada Bichili
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Joseph H Caplan
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - William P Milgrim
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - J Bryan Mann
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, Texas; and
| | - Ihtsham Haq
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| |
Collapse
|
4
|
Calaway C, Mishra S, Parrino R, Martinez KJ, Mann JB, Signorile JF. The Impact of Velocity-Based Training on Load-Velocity Relationships in Leg Press and Chest Press for Older Persons. J Strength Cond Res 2024; 38:1136-1143. [PMID: 38489597 DOI: 10.1519/jsc.0000000000004750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
ABSTRACT Calaway, C, Mishra, S, Parrino, R, Martinez, KJ, Mann, JB, and Signorile, JF. Velocity-based training affects the load-velocity relationship in leg press and chest press for older persons. J Strength Cond Res 38(6): 1136-1143, 2024-This study examined the impact of 3 months of velocity-based training (VBT) on chest press (CP) and leg press (LP) maximal strength (1 repetition maximum [1RM]), peak power (PP), and percentage load where PP was achieved (%1RMPP) in older adults. Twenty-nine subjects were assigned to either a velocity-deficit (VD) group or a force-deficit (FD) group for each exercise depending on their load-velocity (LV) curves. Changes in load were determined by the ability to maintain either 90% (VD) or 70% (FD) of their PP during training. Subjects' powers were tested before and after the training intervention at loads between 40 and 80%1RM. Separate 2 (group) × 2 (time) ANOVA was used to examine changes in each variable by group for each exercise. Wilcoxon signed-rank tests were used to determine whether significant changes in %1RMPP for each exercise and group. For chest press 1 repetition maximum, there were no significant main effects or interaction. Significant main effects for time were observed for leg press 1 repetition maximum ( p < 0 .001, η2 = 0.547) and chest press peak power ( p = 0.009, η2 = 0.243). For LPPP, there were no significant main effects or interactions. For %1RMPP, CP median scores revealed no significant changes for either group. Significant declines in %1RMPP were observed for leg press velocity-deficit and leg press force-deficit ( p < 0.03) groups. Velocity-based training was effective at improving 1RM, PP, and shifting %1RMPP in the LP groups. These results have implications for targeting power improvements at specific areas of the LV curve. Health care providers and trainers should consider these findings when constructing exercise programs to counter age-related declines in older adults.
Collapse
Affiliation(s)
- Caleb Calaway
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida; and
| | - Shaunak Mishra
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida; and
| | - Rosalia Parrino
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida; and
| | - Kylie J Martinez
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida; and
| | - J Bryan Mann
- Department of Kinesiology and Sports Management, Texas A&M University, College Station, Texas
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida; and
| |
Collapse
|
5
|
Cornejo-Daza PJ, Sánchez-Valdepeñas J, Rodiles-Guerrero L, Páez-Maldonado JA, Ara I, León-Prados JA, Alegre LM, Pareja-Blanco F, Alcazar J. Vastus Lateralis Muscle Size Is Differently Associated With the Different Regions of the Squat Force-Velocity and Load-Velocity Relationships, Rate of Force Development, and Physical Performance Young Men. J Strength Cond Res 2024; 38:450-458. [PMID: 38231131 DOI: 10.1519/jsc.0000000000004654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
ABSTRACT Cornejo-Daza, PJ, Sánchez-Valdepeñas, J, Rodiles-Guerrero, L, Páez-Maldonado, JA, Ara, I, León-Prados, JA, Alegre, LM, Pareja-Blanco, F, and Alcazar, J. Vastus lateralis muscle size is differently associated with the different regions of the squat force-velocity and load-velocity relationships, rate of force development, and physical performance young men. J Strength Cond Res 38(3): 450-458, 2024-The influence that regional muscle size and muscle volume may have on different portions of the force-velocity (F-V) and load-velocity (L-V) relationships, explosive force, and muscle function of the lower limbs is poorly understood. This study assessed the association of muscle size with the F-V and L-V relationships, rate of force development (RFD) and maximal isometric force in the squat exercise, and vertical jump performance via countermovement jump (CMJ) height. Forty-nine resistance-trained young men (22.7 ± 3.3 years old) participated in the study. Anatomical cross-sectional area (ACSA) of the vastus lateralis (VLA) muscle was measured using the extended field of view mode in an ultrasound device at 3 different femur lengths (40% [distal], 57.5% [medial], and 75% [proximal]), and muscle volume was estimated considering the VLA muscle insertion points previously published and validated in this study. There were significant associations between all muscle size measures (except distal ACSA) and (a) forces and loads yielded at velocities ranging from 0 to 1.5 m·s -1 ( r = 0.36-0.74, p < 0.05), (b) velocities exerted at forces and loads ranging between 750-2,000 N and 75-200 kg, respectively ( r = 0.31-0.69, p < 0.05), and (c) RFD at 200 and 400 milliseconds ( r = 0.35-0.64, p < 0.05). Proximal and distal ACSA and muscle volume were significantly associated with CMJ height ( r = 0.32-0.51, p < 0.05). Vastus lateralis muscle size exhibited a greater influence on performance at higher forces or loads and lower velocities and late phases of explosive muscle actions. Additionally, proximal ACSA and muscle volume showed the highest correlation with the muscle function measures.
Collapse
Affiliation(s)
- Pedro J Cornejo-Daza
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Department of Sports and Computer Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| | - Juan Sánchez-Valdepeñas
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Department of Sports and Computer Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| | - Luis Rodiles-Guerrero
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Faculty of Education, Department of Human Movement and Sport Performance, Universidad de Sevilla, Seville, Spain
| | - José A Páez-Maldonado
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Faculty of Sport Sciences, University of Seville, Osuna, Spain
| | - Ignacio Ara
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
- GENUD Toledo Research Group, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain; and
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A León-Prados
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Department of Sports and Computer Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| | - Luis M Alegre
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
- GENUD Toledo Research Group, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain; and
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Pareja-Blanco
- Department of Sports and Computer Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
- Department of Sports and Computer Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| | - Julian Alcazar
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
- GENUD Toledo Research Group, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain; and
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Rivière JR, Morin JB, Bowen M, Cross MR, Messonnier LA, Samozino P. Exploring the Low Force-High Velocity Domain of the Force-Velocity Relationship in Acyclic Lower-Limb Extensions. SPORTS MEDICINE - OPEN 2023; 9:55. [PMID: 37439876 PMCID: PMC10344854 DOI: 10.1186/s40798-023-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE To compare linear and curvilinear models describing the force-velocity relationship obtained in lower-limb acyclic extensions, considering experimental data on an unprecedented range of velocity conditions. METHODS Nine athletes performed lower-limb extensions on a leg-press ergometer, designed to provide a very broad range of force and velocity conditions. Previously inaccessible low inertial and resistive conditions were achieved by performing extensions horizontally and with assistance. Force and velocity were continuously measured over the push-off in six resistive conditions to assess individual force-velocity relationships. Goodness of fit of linear and curvilinear models (second-order polynomial function, Fenn and Marsh's, and Hill's equations) on force and velocity data were compared via the Akaike Information Criterion. RESULTS Expressed relative to the theoretical maximal force and velocity obtained from the linear model, force and velocity data ranged from 26.6 ± 6.6 to 96.0 ± 3.6% (16-99%) and from 8.3 ± 1.9 to 76.6 ± 7.0% (5-86%), respectively. Curvilinear and linear models showed very high fit (adjusted r2 = 0.951-0.999; SEE = 17-159N). Despite curvilinear models better fitting the data, there was a ~ 99-100% chance the linear model best described the data. CONCLUSION A combination between goodness of fit, degrees of freedom and common sense (e.g., rational physiologically values) indicated linear modelling is preferable for describing the force-velocity relationship during acyclic lower-limb extensions, compared to curvilinear models. Notably, linearity appears maintained in conditions approaching theoretical maximal velocity. Using horizontal and assisted lower-limb extension to more broadly explore resistive/assistive conditions could improve reliability and accuracy of the force-velocity relationship and associated parameters.
Collapse
Affiliation(s)
- Jean Romain Rivière
- Laboratoire Interuniversitaire de Biologie de La Motricité, Univ Savoie Mont Blanc, EA 7424, 73000, Chambéry, France.
| | - Jean-Benoît Morin
- Laboratoire Interuniversitaire de Biologie de La Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont Blanc, 42023, Saint-Etienne, France
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Maximilien Bowen
- Laboratoire Interuniversitaire de Biologie de La Motricité, Univ Savoie Mont Blanc, EA 7424, 73000, Chambéry, France
| | - Matt R Cross
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Laurent A Messonnier
- Laboratoire Interuniversitaire de Biologie de La Motricité, Univ Savoie Mont Blanc, EA 7424, 73000, Chambéry, France
| | - Pierre Samozino
- Laboratoire Interuniversitaire de Biologie de La Motricité, Univ Savoie Mont Blanc, EA 7424, 73000, Chambéry, France
| |
Collapse
|
7
|
Jukic I, Castilla AP, Ramos AG, Van Hooren B, McGuigan MR, Helms ER. The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med 2023; 53:177-214. [PMID: 36178597 PMCID: PMC9807551 DOI: 10.1007/s40279-022-01754-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Velocity loss (VL) experienced in a set during resistance training is often monitored to control training volume and quantify acute fatigue responses. Accordingly, various VL thresholds are used to prescribe resistance training and target different training adaptations. However, there are inconsistencies in the current body of evidence regarding the magnitude of the acute and chronic responses to the amount of VL experienced during resistance training. OBJECTIVE The aim of this systematic review was to (1) evaluate the acute training volume, neuromuscular, metabolic, and perceptual responses to the amount of VL experienced during resistance training; (2) synthesize the available evidence on the chronic effects of different VL thresholds on training adaptations; and (3) provide an overview of the factors that might differentially influence the magnitude of specific acute and chronic responses to VL during resistance training. METHODS This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Five databases were searched, and studies were included if they were written in English, prescribed resistance training using VL, and evaluated at least one (1) acute training volume, neuromuscular, metabolic, or perceptual response or (2) training adaptation. Risk of bias was assessed using a modified Cochrane Collaboration's tool for assessing the risk of bias in randomized trials. Multilevel and multivariate meta-regressions were performed where possible. RESULTS Eighteen acute and 19 longitudinal studies met the inclusion criteria, of which only one had more than one risk of bias item assessed as high risk. Based on the included acute studies, it seems that the number of repetitions per set, blood lactate concentration, and rating of perceived exertion generally increase, while countermovement jump height, running sprint times, and velocity against fixed loads generally decrease as VL increases. However, the magnitude of these effects seems to be influenced, among other factors, by the exercise and load used. Regarding training adaptations, VL experienced during resistance training did not influence muscle strength and endurance gains. Increases in VL were associated with increases in hypertrophy (b = 0.006; 95% confidence interval [CI] 0.001, 0.012), but negatively affected countermovement jump (b = - 0.040; 95% CI - 0.079, - 0.001), sprint (b = 0.001; 95% CI 0.001, 0.002), and velocity against submaximal load performance (b = - 0.018; 95% CI - 0.029, - 0.006). CONCLUSIONS A graded relationship exists between VL experienced during a set and acute training volume, neuromuscular, metabolic, and perceptual responses to resistance training. However, choice of exercise, load, and individual trainee characteristics (e.g., training history) seem to modulate these relationships. The choice of VL threshold does not seem to affect strength and muscle endurance gains whereas higher VL thresholds are superior for enhancing hypertrophy, and lower VL thresholds are superior for jumping, sprinting, and velocity against submaximal loads performance. CLINICAL TRIAL REGISTRATION The original protocol was prospectively registered ( https://osf.io/q4acs/ ) with the Open Science Framework.
Collapse
Affiliation(s)
- Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Alejandro Pérez Castilla
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Amador García Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michael R McGuigan
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
8
|
Alcazar J, Pareja-Blanco F, Rodriguez-Lopez C, Gutierrez-Reguero H, Sanchez-Valdepeñas J, Cornejo-Daza PJ, Ara I, Alegre LM. A novel equation that incorporates the linear and hyperbolic nature of the force-velocity relationship in lower and upper limb exercises. Eur J Appl Physiol 2022; 122:2305-2313. [PMID: 35864344 DOI: 10.1007/s00421-022-05006-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
The purpose of this study is to provide a force-velocity (F-V) equation that combines a linear and a hyperbolic region, and to compare its derived results to those obtained from linear equations. A total of 10 cross-training athletes and 14 recreationally resistance-trained young men were assessed in the unilateral leg press (LP) and bilateral bench press (BP) exercises, respectively. F-V data were recorded using a force plate and a linear encoder. Estimated maximum isometric force (F0), maximum muscle power (Pmax), and maximum unloaded velocity (V0) were calculated using a hybrid (linear and hyperbolic) equation and three different linear equations: one derived from the hybrid equation (linearhyb), one applied to data from 0 to 100% of F0 (linear0-100), and one applied to data from 45 to 100% of F0 (linear45-100). The hybrid equation presented the best fit to the recorded data (R2 = 0.996 and 0.998). Compared to the results derived from the hybrid equation in the LP, significant differences were observed in F0 derived from linear0-100; V0 derived from linearhyb, linear0-100 and linear45-100; and Pmax derived from linearhyb and linear45-100 (all p < 0.05). For the BP, compared to the hybrid equation, significant differences were found in F0 derived from linear0-100; and V0 and Pmax derived from linearhyb, linear0-100 and linear45-100 (all p < 0.05). An F-V equation combining a linear and a hyperbolic region showed to fit adequately recorded F-V data from ~ 20 to 100% of F0, and overcame the limitations shown by linear equations while providing relevant results.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda. Carlos III, S/N, 45071, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Fernando Pareja-Blanco
- Physical Performance and Athletic Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda. Carlos III, S/N, 45071, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Hector Gutierrez-Reguero
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda. Carlos III, S/N, 45071, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Juan Sanchez-Valdepeñas
- Physical Performance and Athletic Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - Pedro J Cornejo-Daza
- Physical Performance and Athletic Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda. Carlos III, S/N, 45071, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda. Carlos III, S/N, 45071, Toledo, Spain. .,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
9
|
Rodriguez-Lopez C, Alcazar J, Sanchez-Martin C, Baltasar-Fernandez I, Ara I, Csapo R, Alegre LM. Neuromuscular adaptations after 12 weeks of light- vs. heavy-load power-oriented resistance training in older adults. Scand J Med Sci Sports 2021; 32:324-337. [PMID: 34618979 DOI: 10.1111/sms.14073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to determine the specific adaptations provoked by power-oriented resistance training using light (LL-PT, 40% 1-RM) vs. heavy (HL-PT, 80% 1-RM) loads in older adults. Using a randomized within-subject study design, 45 older adults (>65 years) completed an 8-week control period (CTR) followed by 12 weeks of unilateral LL-PT vs. HL-PT on a leg press. The 1-RM, theoretical force at zero velocity (F0 ), maximal unloaded velocity (V0 ), and maximal muscle power (Pmax ) were determined through a force-velocity relationship test. Isometrically, the rate of force development (RFD) and the corresponding muscle excitation of the knee extensor muscles were assessed. In addition, muscle cross-sectional area (CSA) and architecture of two quadriceps muscles were determined. Changes after CTR, LL-PT and HL-PT were compared using linear mixed models. HL-PT provoked greater improvements in 1-RM and F0 (effect size (ES) = 0.55-0.68; p < 0.001) than those observed after LL-PT (ES = 0.27-0.47; p ≤ 0.001) (post hoc treatment effect, p ≤ 0.057). By contrast, ES of changes in V0 was greater in LL-PT compared to HL-PT (ES = 0.71, p < 0.001 vs. ES = 0.39, p < 0.001), but this difference was not statistically significant. Both power training interventions elicited a moderate increase in Pmax (ES = 0.65-0.69, p < 0.001). Only LL-PT improved early RFD (ie, ≤100 ms) and muscle excitation (ES = 0.36-0.60, p < 0.05). Increased CSA were noted after both power training programs (ES = 0.13-0.35, p < 0.035), whereas pennation angle increased only after HL-PT (ES = 0.37, p = 0.004). In conclusion, HL-PT seems to be more effective in improving the capability to generate large forces, whereas LL-PT appears to trigger greater gains in movement velocity in older adults. However, both interventions promoted similar increases in muscle power as well as muscle hypertrophy.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Coral Sanchez-Martin
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ivan Baltasar-Fernandez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|