1
|
Robin N, Crespo M, Ishihara T, Carien R, Brechbuhl C, Hue O, Dominique L. Pre-, Per- and post-cooling strategies used by competitive tennis players in hot dry and hot humid conditions. Front Sports Act Living 2024; 6:1427066. [PMID: 39359487 PMCID: PMC11445033 DOI: 10.3389/fspor.2024.1427066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose This research investigated the pre-, per- and post cooling strategies used by competitive tennis players from various levels of play who occasionally train and compete in hot (>28°C) and humid (>60% rH), and dry (<60% rH) environments. Methods 129 male tennis players (Mage = 24.9) competing at regional (N = 54), national (N = 30) and international (N = 45) levels, completed an online questionnaire regarding their use (i.e., timing, type, justification and effectiveness) of pre- (i.e., before practice), per- (i.e., during exercise) and post-cooling strategies when playing tennis in hot dry (HD) and hot humid (HH) conditions. Individual follow-up interviews were also carried on 3 participants to gain an in-depth understanding of the player's experience. Results Competitive tennis players used both internal and external cooling strategies to combat the negative effects of HD and HH conditions, but considered the HH to be more stressful than HD and experienced more heat-related illness in HH environments. International players used cold packs and cold towel more frequently than the regional and national players in hot environments, and used cold water immersion and cold vest more frequently than the latter in HH. Differences in strategy use were mostly observed during per-cooling where regional and national players more frequently used cold drinks than international players who more frequently used cold packs in HD and cold towel in HH conditions. Moreover the latter more frequently used cold towel, cold packs and cold water immersion as post-cooling strategies than regional players. Conclusion When playing tennis in the heat, it is strongly recommended to employ cooling strategies to maintain health, limit declines in performance, and promote recovery. We also recommend improving education regarding the appropriate use and effectiveness of cooling strategies, and increasing their availability in tournaments.
Collapse
Affiliation(s)
- Nicolas Robin
- Laboratory ACTES (EA 3596), Sport Sciences Faculty, University of Antilles, Pointe-à-Pitre, France
| | - Miguel Crespo
- International Tennis Federation, London, United Kingdom
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Robbin Carien
- Laboratory ACTES (EA 3596), Sport Sciences Faculty, University of Antilles, Pointe-à-Pitre, France
| | | | - Olivier Hue
- Laboratory ACTES (EA 3596), Sport Sciences Faculty, University of Antilles, Pointe-à-Pitre, France
| | - Laurent Dominique
- Laboratory IRISSE (EA 4070), Sport Sciences Faculty, University of La Reunion, Le Tampon, France
| |
Collapse
|
2
|
Brown HA, Topham TH, Clark B, Woodward AP, Ioannou LG, Flouris AD, Telford RD, Smallcombe JW, Jay O, Périard JD. Thermal and cardiovascular heat adaptations in active adolescents following summer. Temperature (Austin) 2024; 11:254-265. [PMID: 39193050 PMCID: PMC11346565 DOI: 10.1080/23328940.2024.2347161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to investigate seasonal heat acclimatization in active adolescents following summer. Fifteen (5 females) active adolescents (14.6 ± 1.0 y) completed a 45-min heat response test (HRT) walking at 60% V ˙ O2peak in 40°C and 30% relative humidity before and after summer (i.e. November 2022 and March 2023). During the HRT, gastro-intestinal temperature (Tgi), skin temperature (Tsk), heart rate, local sweat rate (LSR) and whole-body sweat loss (WBSL) were recorded. Carbon monoxide rebreathing and dual-energy X-ray absorptiometry scans determined resting hematological measures and body composition. Participants completed physical activity (PA) diaries and wore an accelerometer for two one-week periods (pre- and post-summer). Daytime wet-bulb globe temperature (WBGT) was calculated for each summer day. Data are presented as posterior mean and 90% credible intervals. Participants reported 7 ± 4 h·wk-1 of outdoor PA, and daytime WBGT was 21.2 ± 4.6°C. Following summer, resting Tgi and heart rate were reduced by 0.2°C [-0.3, -0.1; probability of direction = 99%] and 7 beats·min-1 [-10, -3; 100%], respectively. During the HRT, there was an earlier onset of sweating (-0.2°C [-0.3, -0.0; 98%]), an attenuated rise of Tgi (0.2°C [-0.5, 0.0; 92%]) and mean Tsk changed by -0.2°C [-0.5, 0.1; 86%]. There was minimal evidence for heat adaptations in LSR or WBSL, hematological parameters or perceptual measures. This is the first study to demonstrate seasonal heat adaptations in active adolescents. Reductions in resting Tgi and exercising Tsk and a lower Tgi at the onset of sweating were associated with a smaller rise in Tgi during the HRT following summer.
Collapse
Affiliation(s)
- Harry A. Brown
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Thomas H. Topham
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT, Australia
| | | | - Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Richard D. Telford
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - James W. Smallcombe
- Heat and Health Research Incubator, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Julien D. Périard
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
3
|
Flouris AD, Notley SR, Stearns RL, Casa DJ, Kenny GP. Recommended water immersion duration for the field treatment of exertional heat stroke when rectal temperature is unavailable. Eur J Appl Physiol 2024; 124:479-490. [PMID: 37552243 DOI: 10.1007/s00421-023-05290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The recommended treatment for exertional heat stroke is immediate, whole-body immersion in < 10 °C water until rectal temperature (Tre) reaches ≤ 38.6 °C. However, real-time Tre assessment is not always feasible or available in field settings or emergency situations. We defined and validated immersion durations for water temperatures of 2-26 °C for treating exertional heat stroke. METHODS We compiled data for 54 men and 18 women from 7 previous laboratory studies and derived immersion durations for reaching 38.6 °C Tre. The resulting immersion durations were validated against the durations of cold-water immersion used to treat 162 (98 men; 64 women) exertional heat stroke cases at the Falmouth Road Race between 1984 and 2011. RESULTS Age, height, weight, body surface area, body fat, fat mass, lean body mass, and peak oxygen uptake were weakly associated with the cooling time to a safe Tre of 38.6 °C during immersions to 2-26 °C water (R2 range: 0.00-0.16). Using a specificity criterion of 0.9, receiver operating characteristics curve analysis showed that exertional heat stroke patients must be immersed for 11-12 min when water temperature is ≤ 9 °C, and for 18-19 min when water temperature is 10-26 °C (Cohen's Kappa: 0.32-0.75, p < 0.001; diagnostic odds ratio: 8.63-103.27). CONCLUSION The reported immersion durations are effective for > 90% of exertional heat stroke patients with pre-immersion Tre of 39.5-42.8 °C. When available, real-time Tre monitoring is the standard of care to accurately diagnose and treat exertional heat stroke, avoiding adverse health outcomes associated with under- or over-cooling, and for implementing cool-first transport second exertional heat stroke policies.
Collapse
Affiliation(s)
- Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Defence Science and Technology Group, Melbourne, VIC, Australia
| | - Rebecca L Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Montpetit Hall, 125 University Private, Room 367, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Morrison SA. Moving in a hotter world: Maintaining adequate childhood fitness as a climate change countermeasure. Temperature (Austin) 2022; 10:179-197. [PMID: 37332309 PMCID: PMC10274554 DOI: 10.1080/23328940.2022.2102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022] Open
Abstract
Children cope with high temperatures differently than adults do, largely because of slight alterations in their body proportions and heat loss mechanisms compared to fully mature humans. Paradoxically, all current tools of assessing thermal strain have been developed on adults. As the Earth's warming continues to accelerate, children are set to bear the health risk brunt of rising global temperatures. Physical fitness has a direct impact on heat tolerance, yet children are less fit and more obese than ever before. Longitudinal research reveals that children have 30% lower aerobic fitness than their parents did at the same age; this deficit is greater than can be recovered by training alone. So, as the planet's climate and weather patterns become more extreme, children may become less capable of tolerating it. This comprehensive review provides an outline of child thermoregulation and assessment of thermal strain, before moving to summarize how aerobic fitness can modulate hyperthermia, heat tolerance, and behavioral thermoregulation in this under-researched population. The nature of child physical activity, physical fitness, and one's physical literacy journey as an interconnected paradigm for promoting climate change resilience is explored. Finally, future research foci are suggested to encourage continued exploration of this dynamic field, notable since more extreme, multifactorial environmental stressors are expected to continue challenging the physiological strain of the human population for the foreseeable future.
Collapse
|
5
|
Abstract
Background Physiological heat adaptations can be induced following various protocols that use either artificially controlled (i.e. acclimation) or naturally occurring (i.e. acclimatisation) environments. During the summer months in seasonal climates, adequate exposure to outdoor environmental heat stress should lead to transient seasonal heat acclimatisation. Objectives The aim of the systematic review was to assess the available literature and characterise seasonal heat acclimatisation during the summer months and identify key factors that influence the magnitude of adaptation. Eligibility Criteria English language, full-text articles that assessed seasonal heat acclimatisation on the same sample of healthy adults a minimum of 3 months apart were included. Data Sources Studies were identified using first- and second-order search terms in the databases MEDLINE, SPORTDiscus, CINAHL Plus with Full Text, Scopus and Cochrane, with the last search taking place on 15 July 2021. Risk of Bias Studies were independently assessed by two authors for the risk of bias using a modified version of the McMaster critical review form. Data Extraction Data for the following outcome variables were extracted: participant age, sex, body mass, height, body fat percentage, maximal oxygen uptake, time spent exercising outdoors (i.e. intensity, duration, environmental conditions), heat response test (i.e. protocol, time between tests), core temperature, skin temperature, heart rate, whole-body sweat loss, whole-body and local sweat rate, sweat sodium concentration, skin blood flow and plasma volume changes. Results Twenty-nine studies were included in this systematic review, including 561 participants across eight countries with a mean summer daytime wet-bulb globe temperature (WBGT) of 24.9 °C (range: 19.5–29.8 °C). Two studies reported a reduction in resting core temperature (0.16 °C; p < 0.05), 11 reported an increased sweat rate (range: 0.03–0.53 L·h−1; p < 0.05), two observed a reduced heart rate during a heat response test (range: 3–8 beats·min−1; p < 0.05), and six noted a reduced sweat sodium concentration (range: − 22 to − 59%; p < 0.05) following summer. The adaptations were associated with a mean summer WBGT of 25.2 °C (range: 19.6–28.7 °C). Limitations The available studies primarily focussed on healthy male adults and demonstrated large differences in the reporting of factors that influence the development of seasonal heat acclimatisation, namely, exposure time and duration, exercise task and environmental conditions. Conclusions Seasonal heat acclimatisation is induced across various climates in healthy adults. The magnitude of adaptation is dependent on a combination of environmental and physical activity characteristics. Providing environmental conditions are conducive to adaptation, the duration and intensity of outdoor physical activity, along with the timing of exposures, can influence seasonal heat acclimatisation. Future research should ensure the documentation of these factors to allow for a better characterisation of seasonal heat acclimatisation. PROSPERO Registration CRD42020201883. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01677-0.
Collapse
|
6
|
Ioannou LG, Tsoutsoubi L, Mantzios K, Vliora M, Nintou E, Piil JF, Notley SR, Dinas PC, Gourzoulidis GA, Havenith G, Brearley M, Mekjavic IB, Kenny GP, Nybo L, Flouris AD. Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations. Temperature (Austin) 2022; 9:274-291. [PMID: 36249710 PMCID: PMC9559325 DOI: 10.1080/23328940.2022.2044739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this third paper, we conducted field experiments across nine countries to evaluate the efficacy of 61 meteorology-based TSIs for assessing the physiological strain experienced by individuals working in the heat. We monitored 372 experi-enced and acclimatized workers during 893 full work shifts. We continuously assessed core body temperature, mean skin temperature, and heart rate data together with pre/post urine specific gravity and color. The TSIs were evaluated against 17 published criteria covering physiological parameters, practicality, cost effectiveness, and health guidance issues. Simple meteorological parameters explained only a fraction of the variance in physiological heat strain (R2 = 0.016 to 0.427; p < 0.001), reflecting the importance of adopting more sophisticated TSIs. Nearly all TSIs correlated with mean skin temperature (98%), mean body temperature (97%), and heart rate (92%), while 66% of TSIs correlated with the magnitude of dehydration and 59% correlated with core body temperature (r = 0.031 to 0.602; p < 0.05). When evaluated against the 17 published criteria, the TSIs scored from 4.7 to 55.4% (max score = 100%). The indoor (55.4%) and outdoor (55.1%) Wet-Bulb Globe Temperature and the Universal Thermal Climate Index (51.7%) scored higher compared to other TSIs (4.7 to 42.0%). Therefore, these three TSIs have the highest potential to assess the physiological strain experienced by individuals working in the heat.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | | | - Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Matt Brearley
- National Critical Care and Trauma Response Centre, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Thermal Hyperformance, Pty Ltd, Takura, Qld, Australia
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Slovenia
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, ON, Canada
| |
Collapse
|
7
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|