1
|
Zacharias E, Robak N, Passmore S. An examination of studies related to the sport of curling: a scoping review. Front Sports Act Living 2024; 6:1291241. [PMID: 38414637 PMCID: PMC10898248 DOI: 10.3389/fspor.2024.1291241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction There has been growth in research in the sport of curling over the past few decades. The need for a scoping review is warranted. This study's purpose was to identify and synthesize research evidence regarding quantitative variables for a series of components within the sport of curling. Methods A scoping review of studies published and established within four databases was performed. One independent reviewer selected studies based on a systematic procedure. Inclusion criteria for studies were: (1) interventions that focused on the sport of curling; (2) quantitative in nature; (3) written in English; and (4) published within a peer-reviewed journal, a conference presentation, or a published thesis. Results Searching identified 8,467 articles and 94 met the inclusion criteria. Data were organized and synthesized based on the devised research variables from the sport of curling: The curl mechanism of the curling stone; the impact of sweeping on stone trajectory; curling delivery mechanics; wheelchair curling; technology analysis; strategy and tactics; psychological factors; injury occurrences; facility and arena infrastructure; and assessment of curling training and ability. The findings confirm the strong knowledge base that exists across game variables and unveil controversy between the underlying physics that produces curl, as well as the mechanisms of sweeping responsible for manipulating the stone trajectory. Conclusions Knowledge derived from this review can assist researchers, coaches, and curlers in addressing the specific variables of the sport that influence stone trajectory and game results. Such awareness will expose gaps in the current understanding and foster new research endeavors to further the knowledge of the sport.
Collapse
|
2
|
Wang X, Liu R, Zhang T, Shan G. The Proper Motor Control Model Revealed by Wheelchair Curling Quantification of Elite Athletes. BIOLOGY 2022; 11:biology11020176. [PMID: 35205043 PMCID: PMC8869162 DOI: 10.3390/biology11020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/21/2023]
Abstract
Simple Summary This is the first study to quantitatively explore the motor control of elite wheelchair curling athletes. It is known that, psychologically, wheelchair users are often not comfortable with their wheelchair motor skills and, therefore, hesitate to participate in sports/physical activities. For increasing exercise of this population, an effective learning/training program should firstly be developed. This study has chosen a suitable sport, i.e., wheelchair curling, and identified and described generalizable characteristics or “markers” among elite athletes. Such markers could provide effective ways of accurately identifying, evaluating, and communicating when learning the skill. Due to this being an under-investigated area, this study also shed new light on how to scientifically promote physical participation of wheelchair users. Abstract Background: Wheelchair users are disadvantaged when it comes to accruing the benefits of physical activities. Hence, promoting various sports is crucial for keeping this population healthy. Since wheelchair curling can be played by individuals from a wide range of ages, strengths, and endurance levels, it has potential to improve wheelchair users’ well-being. Yet, hardly any motion studies exist. This study aimed to facilitate understanding of optimized control of wheelchair curling for promoting wheelchair users’ participation. Methods: Using motion capture technology, nine national-level athletes were tested. Kinematic parameters related to segment/joint control and their coordination were quantified for both slow and fast curling. Descriptive statistics (means and standard deviations) and correlation analysis were applied for characterizing the skill. Results: (1) Curling control consists of an acceleration phase and a stabilizing delivery phase; (2) the control of trunk, shoulder, and wrist are responsible for accelerating the rock; (3) elbow control is accountable for the accurate delivery of the rock; and (4) during the slow curling, a synchronized effort of trunk, shoulder, and wrist is used for accelerating the rock, while a sequential control among the segment/joints is applied in fast curling. Conclusions: The results supply valuable motor learning markers that could have a significant positive impact on the teaching and learning of wheelchair curling, as such, the findings have great potential for the health promotion of wheelchair users.
Collapse
Affiliation(s)
- Xiangdong Wang
- School of Physical Education, Jimei University, Xiamen 361021, China;
| | - Ruijiao Liu
- Graduate School, Beijing Sport University, Beijing 100084, China; (R.L.); (T.Z.)
| | - Tian Zhang
- Graduate School, Beijing Sport University, Beijing 100084, China; (R.L.); (T.Z.)
| | - Gongbing Shan
- Biomechanics Lab, Faculty of Arts & Science, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: ; Tel.: +1-403-3292683
| |
Collapse
|
3
|
Rum L, Sten O, Vendrame E, Belluscio V, Camomilla V, Vannozzi G, Truppa L, Notarantonio M, Sciarra T, Lazich A, Mannini A, Bergamini E. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. SENSORS 2021; 21:s21051858. [PMID: 33799941 PMCID: PMC7961424 DOI: 10.3390/s21051858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
The interest and competitiveness in sports for persons with disabilities has increased significantly in the recent years, creating a demand for technological tools supporting practice. Wearable sensors offer non-invasive, portable and overall convenient ways to monitor sports practice. This systematic review aims at providing current evidence on the application of wearable sensors in sports for persons with disability. A search for articles published in English before May 2020 was performed on Scopus, Web-Of-Science, PubMed and EBSCO databases, searching titles, abstracts and keywords with a search string involving terms regarding wearable sensors, sports and disability. After full paper screening, 39 studies were included. Inertial and EMG sensors were the most commonly adopted wearable technologies, while wheelchair sports were the most investigated. Four main target applications of wearable sensors relevant to sports for people with disability were identified and discussed: athlete classification, injury prevention, performance characterization for training optimization and equipment customization. The collected evidence provides an overview on the application of wearable sensors in sports for persons with disability, providing useful indication for researchers, coaches and trainers. Several gaps in the different target applications are highlighted altogether with recommendation on future directions.
Collapse
Affiliation(s)
- Lorenzo Rum
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Oscar Sten
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Eleonora Vendrame
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Valeria Belluscio
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Valentina Camomilla
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Giuseppe Vannozzi
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
- Correspondence: ; Tel.: +39-0636733522
| | - Luigi Truppa
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Marco Notarantonio
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Aldo Lazich
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Andrea Mannini
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy
| | - Elena Bergamini
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| |
Collapse
|