1
|
Smith ZH, Martin RA, Casto E, Bigelow C, Busa MA, Kent JA. Muscle Torque-Velocity Relationships and Fatigue With Reduced Knee Joint Range of Motion in Young and Older Adults. J Appl Biomech 2024; 40:261-269. [PMID: 38663850 DOI: 10.1123/jab.2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 07/31/2024]
Abstract
The purpose of this study was to evaluate the influence of knee joint range of motion (RoM) on the torque-velocity relationship and fatigue in the knee extensor muscles of 7 young (median = 26 y) and 7 older (68 y) adults. Each leg was assigned a RoM (35° or 75°) over which to perform a torque-velocity protocol (maximal isokinetic contractions, 60-300°·s-1) and a fatigue protocol (120 maximal contractions at 120°·s-1, 0.5 Hz). Six older participants were unable to reach 300°·s-1 over 35°. Therefore, the velocity eliciting 75% of peak torque at 60°·s-1 (V75, °·s-1) was calculated for each RoM from a fit of individual torque-velocity curves (60-240°·s-1), and ΔV75 (35°-75°) was determined. Fatigue (final torque/initial torque) was used to calculate Δfatigue (35°-75°). ΔV75 was not different from 0 in young (-28.3°·s-1 [-158.6 to 55.7], median [range], P = .091) or older (-18.5°·s-1 [-95.0 to 23.9], P = .128), with no difference by age (P = .710). In contrast, fatigue was greater for 75° in young (Δfatigue = 25.9% [17.5-30.3], P = .018) and older (17.2% [11.9-52.9], P = .018), with no effect of age (P = .710). These data indicate that, regardless of age, RoM did not alter the torque-velocity relationship between 60 and 240°·s-1, and fatigue was greater with a larger RoM.
Collapse
Affiliation(s)
- Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - R Anthony Martin
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Erica Casto
- Center for Human Health and Performance, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Carol Bigelow
- Department of Biostatistics & Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Michael A Busa
- Center for Human Health and Performance, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Steinbrink GM, Martinez J, Swartz AM, Strath SJ. Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength. J Funct Morphol Kinesiol 2024; 9:103. [PMID: 38921639 PMCID: PMC11204576 DOI: 10.3390/jfmk9020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
With a growing aging population, the routine assessment of physical function may become a critical component of clinical practice. The purpose of this cross-sectional study is to compare two common assessments of muscular function: (1) isometric knee extension strength (KES) and (2) sit-to-stand (STS) muscle power tests, in predicting objective physical function (i.e., gait speed) in aging adults. 84 adults (56% female, mean (SD) age = 66.6 (9.4) years) had their relative KES, STS power, usual gait speed (UGS), and fast gait speed (FGS) assessed. Multiple linear regression examined the associations between KES, STS power, and gait outcomes. When entered in separate models, KES and STS power were both independently associated with UGS and FGS (Std. β = 0.35-0.44 and 0.42-0.55 for KES and STS power, respectively). When entered in the same model, STS power was associated with UGS and FGS (Std. β = 0.37 [95%CI: 0.15, 0.58] and 0.51 [95%CI: 0.31, 0.70], respectively), while KES was only associated with FGS (Std. β = 0.25 [95%CI: 0.02, 0.48]). STS power seems to be a valid indicator of function in aging adults. Its feasibility as a screening tool for "low" function in the primary care setting should be explored.
Collapse
Affiliation(s)
| | | | | | - Scott J. Strath
- Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (G.M.S.); (J.M.); (A.M.S.)
| |
Collapse
|
3
|
Maciukiewicz JM, Tung EV, Brenneman Wilson EC, Maly MR. Improving muscle capacity utilization with a 12-week strengthening program for females with symptomatic knee osteoarthritis. Gait Posture 2024; 108:341-346. [PMID: 38219329 DOI: 10.1016/j.gaitpost.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/28/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Strengthening exercise improves symptoms in knee osteoarthritis (OA), but it remains unclear if biomechanical mechanisms contribute to this improvement. Muscle capacity utilization, which reflects the proportion of maximum capacity required to complete tasks, may provide insight into how strengthening exercise improves clinical outcomes in painful knee OA. PURPOSE The purpose of this secondary analysis was to determine if a 12-week strengthening intervention reduced muscle capacity utilization during walking, squat and lunge tasks in females with painful knee OA. METHODS Data from 28 females (age 59.6 ± 6.2 years old; body mass index 29.1 ± 4.7 kg/m2) with clinical knee OA were included. Participants completed a strengthening intervention 3 times per week for 12 weeks. Knee extensor isometric torque was measured on a commercial dynamometer; peak values from three exertions were averaged. Peak KFM was extracted and averaged from five walking trials. Mean KFM was extracted and averaged from three trials for each of static lunges and squats. Muscle capacity utilization was the ratio of mean peak KFM to peak extensor torque for walking; and mean KFM to peak extensor torque for squats and lunges. Paired t-tests determined differences between peak extensor torque, peak KFM and muscle capacity utilization from pre to post intervention (p < 0.05). RESULTS & SIGNIFICANCE Peak extensor torque increased at follow up (p = 0.02). Peak KFM during walking decreased (p = 0.005). Muscle capacity utilization during walking (p = 0.008) and squat (p = 0.002) decreased. Mean KFM and muscle capacity utilization during lunge remained unchanged from pre to post intervention. The reduction in muscle capacity utilization at follow up indicates the strengthening intervention produced a decrease in proportion of the maximal capacity a participant used to complete walking and squat tasks. Strengthening both increases maximal muscle capacity and decreases the net moment required during daily tasks in knee OA.
Collapse
Affiliation(s)
| | - Emma V Tung
- University of Waterloo, Department of Kinesiology and Health Sciences, Canada
| | | | - Monica R Maly
- University of Waterloo, Department of Kinesiology and Health Sciences, Canada.
| |
Collapse
|
4
|
Boyer KA, Hayes KL, Umberger BR, Adamczyk PG, Bean JF, Brach JS, Clark BC, Clark DJ, Ferrucci L, Finley J, Franz JR, Golightly YM, Hortobágyi T, Hunter S, Narici M, Nicklas B, Roberts T, Sawicki G, Simonsick E, Kent JA. Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. Exp Gerontol 2023; 173:112102. [PMID: 36693530 PMCID: PMC10008437 DOI: 10.1016/j.exger.2023.112102] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.
Collapse
Affiliation(s)
- Katherine A Boyer
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Kate L Hayes
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | | | | | - Jonathan F Bean
- New England GRECC, VA Boston Healthcare System, Boston, MA, USA; Department of PM&R, Harvard Medical School, Boston, MA, USA; Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Jennifer S Brach
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute and the Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - David J Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - James Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA; Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tibor Hortobágyi
- Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary; Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Marco Narici
- Neuromuscular Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Barbara Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, USA
| | - Thomas Roberts
- Department of Ecology and Evolutionary Biology, Brown University, USA
| | - Gregory Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA
| | - Eleanor Simonsick
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
5
|
Holmes SC, Boyer KA. Knee extensor functional demand in individuals with knee osteoarthritis. Gait Posture 2022; 96:265-270. [PMID: 35709610 DOI: 10.1016/j.gaitpost.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee extensor (KE) weakness is commonly exhibited in individuals with knee osteoarthritis (KOA) and may contribute to disability due an increased muscle functional demand and resulting compensatory gait strategies during locomotion. Muscle functional demand is defined as the percentage of maximal strength that is used during a task. RESEARCH QUESTION The study aim was to quantify KE functional demand in KOA, the impact of walking speed and the relationships with the relative joint contribution to total limb work. METHODS Fourteen individuals with symptomatic KOA underwent gait analysis at preferred and faster speeds and isokinetic dynamometry for KE maximum voluntary isometric torque. The KE functional demand as well as the relative and peak joint work and powers were calculated. Paired samples t-test was used to compare functional demand and relative work between speeds and Pearson's correlation was used to assess the relationship between relative work and functional demand values (α = 0.05). RESULTS The KE functional demand was 36.0 ± 15.7 % for the preferred speed and significantly higher at 49.8 ± 16.1 % for the faster speed, (t(13) = -5.45, p .05). Knee flexion moment was also significantly higher for the faster speed (t(13) = -5.54, p .001). There were significant relationships between fast speed functional demand and relative ankle negative power (r = -0.57) and relative ankle positive work (r = 0.66), (all p .05). SIGNIFICANCE The results suggest that as functional demand nears or exceeds 50 % of the muscle capacity individuals with KOA reduce the relative effort at the knee and use an ankle-based compensation strategy to meet task demands.
Collapse
Affiliation(s)
- Skylar C Holmes
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA.
| | - Katherine A Boyer
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA; Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
6
|
Tung EV, Marriott KA, Laing AC, Mourtzakis M, Maly MR. The relationship between muscle capacity utilization during gait and pain in people with symptomatic knee osteoarthritis. Gait Posture 2022; 94:58-66. [PMID: 35247826 DOI: 10.1016/j.gaitpost.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Muscle capacity utilization reflects the percentage of maximal knee extensor strength required to complete physical activities. RESEARCH QUESTION Is pain associated with muscle capacity utilization during walking in older adults with knee osteoarthritis? Secondarily, is muscle capacity utilization in older adults with knee osteoarthritis sex-specific? METHODS Twenty-three participants (15 females) with symptomatic knee OA completed this study [age 67 ( ± 8) years, body mass index 29.7 ( ± 3.9) kg/m2, gait speed during the Six Minute Walk test 1.25 ( ± 0.25) m/s]. Pain was measured using the Knee injury and Osteoarthritis Outcome Score. Muscle capacity utilization was quantified as the peak external knee flexor moment during level walking normalized to knee extensor maximum voluntary isometric contraction. The knee flexor moment was calculated from kinematic and kinetic data during barefoot level walking at a self-selected speed and at 1.1 m/s. Knee extensor maximum voluntary isometric contraction was measured on a dynamometer. Multiple linear regressions were used to determine the relationship between pain and muscle capacity utilization after adjusting for age, sex, body mass index, and gait speed. Independent sample t-tests examined sex differences. RESULTS Pain was not associated with muscle capacity utilization during self-selected and standardized walking speeds (p = 0.38 and p = 0.36, respectively). Females did not require a greater muscle capacity utilization than males to complete gait at self-selected and standardized speeds (p = 0.28, and p = 0.40, respectively). SIGNIFICANCE Muscle capacity utilization was not associated with pain during walking in people with knee osteoarthritis. Future work should explore more challenging activities of daily living in knee OA.
Collapse
Affiliation(s)
- Emma V Tung
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kendal A Marriott
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Andrew C Laing
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Marina Mourtzakis
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Monica R Maly
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|