1
|
Obaid N, Morioka K, Sinopoulou E, Nout-Lomas YS, Salegio E, Bresnahan JC, Beattie MS, Sparrey CJ. The biomechanical implications of neck position in cervical contusion animal models of SCI. Front Neurol 2023; 14:1152472. [PMID: 37346165 PMCID: PMC10280737 DOI: 10.3389/fneur.2023.1152472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Large animal contusion models of spinal cord injury are an essential precursor to developing and evaluating treatment options for human spinal cord injury. Reducing variability in these experiments has been a recent focus as it increases the sensitivity with which treatment effects can be detected while simultaneously decreasing the number of animals required in a study. Here, we conducted a detailed review to explore if head and neck positioning in a cervical contusion model of spinal cord injury could be a factor impacting the biomechanics of a spinal cord injury, and thus, the resulting outcomes. By reviewing existing literature, we found evidence that animal head/neck positioning affects the exposed level of the spinal cord, morphology of the spinal cord, tissue mechanics and as a result the biomechanics of a cervical spinal cord injury. We posited that neck position could be a hidden factor contributing to variability. Our results indicate that neck positioning is an important factor in studying biomechanics, and that reporting these values can improve inter-study consistency and comparability and that further work needs to be done to standardize positioning for cervical spinal cord contusion injury models.
Collapse
Affiliation(s)
- Numaira Obaid
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Eleni Sinopoulou
- Center for Neural Repair, University of California, San Diego, San Diego, CA, United States
| | - Yvette S. Nout-Lomas
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Michael S. Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| |
Collapse
|
2
|
Obaid N, Bojic AM, Jannesar S, Salegio E, Nout-Lomas Y, Beattie M, Bresnahan J, Sparrey C. Effect of Impact Parameters on a Unilateral Contusion Model of Spinal Cord Injury in a Virtual Population of Non-Human Primates. Neurotrauma Rep 2023; 4:367-374. [PMID: 37350793 PMCID: PMC10282973 DOI: 10.1089/neur.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Non-human primate (NHP) spinal cord injury experiments exhibit high intersubject variability in biomechanical parameters even when a consistent impact protocol is applied to each subject. Optimizing impact parameters to reduce this variability through experiments is logistically challenging in NHP studies. Finite element models provide a complimentary tool to inform experimental design without the cost and complexity of live animal studies. A morphologically variable virtual population (N = 10) of NHPs quantified the interaction of morphological variability and different impact conditions in a unilateral cervical contusion, including impactor size (4 and 5 mm) and mediolateral alignment over the cord midline (0.5 and 1 mm). We explored the effect of these conditions on the magnitude and intersubject variability of impact force and cord lateral slippage. The study demonstrated that a 1-mm mediolateral alignment maximized peak forces and minimized lateral slippage. A 5-mm impactor was beneficial in increasing peak forces, whereas a 4-mm impactor reduced lateral slippage. Comparatively, intersubject variability in peak forces and lateral slippage were minimized with a 0.5-mm mediolateral alignment. The study highlights that impact parameters selected based on peak forces may not be beneficial in reducing variability. The study also showed that morphology was an important contributor to variability. Integrating morphology variability through a virtual population in an injury simulation to investigate mechanistic research questions will more effectively capture the heterogeneity of experiments and provide better insights for effective experimental design.
Collapse
Affiliation(s)
- Numaira Obaid
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Ana-Maria Bojic
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shervin Jannesar
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Yvette Nout-Lomas
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jacqueline Bresnahan
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Carolyn Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Rycman A, McLachlin S, Cronin DS. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3570. [PMID: 34997836 DOI: 10.1002/cnm.3570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid-structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid-structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid-structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian-Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over-predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian-Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid-structure interaction during transverse impact.
Collapse
Affiliation(s)
- Aleksander Rycman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Stewart McLachlin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Duane S Cronin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
He G, Fan L, Liu Y. Mesoscale Simulation-based Parametric Study of Damage Potential in Brain Tissue Using Hyperelastic and Internal State Variable Models. J Biomech Eng 2021; 144:1129242. [PMID: 34897372 DOI: 10.1115/1.4053205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Two-dimensional mesoscale finite element analysis (FEA) of a multi-layered brain tissue was performed to calculate the damage related average stress triaxiality and local maximum von Mises strain in the brain. The FEA was integrated with rate dependent hyperelastic and internal state variable (ISV) models respectively describing the behaviors of wet and dry brain tissues. Using the finite element results, a statistical method of design of experiments (DOE) was utilized to independently screen the relative influences of seven parameters related to brain morphology (sulcal width/depth, gray matter (GM) thickness, cerebrospinal fluid (CSF) thickness and brain lobe) and loading/environment conditions (strain rate and humidity) with respect to the potential damage growth/coalescence in the brain tissue. The results of the parametric study illustrated that the GM thickness and humidity were the two most crucial parameters affecting average stress triaxiality. For the local maximum von Mises strain at the depth of brain sulci, the brain lobe/region was the most influential factor. The conclusion of this investigation gives insight for the future development and refinement of a macroscale brain damage model incorporating information from lower length scale.
Collapse
Affiliation(s)
- Ge He
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Lei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yucheng Liu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Zander HJ, Kowalski KE, DiMarco AF, Lempka SF. Model-Based Optimization of Spinal Cord Stimulation for Inspiratory Muscle Activation. Neuromodulation 2021; 25:1317-1329. [PMID: 33987918 DOI: 10.1111/ner.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE High-frequency spinal cord stimulation (HF-SCS) is a potential method to provide natural and effective inspiratory muscle pacing in patients with ventilator-dependent spinal cord injuries. Experimental data have demonstrated that HF-SCS elicits physiological activation of the diaphragm and inspiratory intercostal muscles via spinal cord pathways. However, the activation thresholds, extent of activation, and optimal electrode configurations (i.e., lead separation, contact spacing, and contact length) to activate these neural elements remain unknown. Therefore, the goal of this study was to use a computational modeling approach to investigate the direct effects of HF-SCS on the spinal cord and to optimize electrode design and stimulation parameters. MATERIALS AND METHODS We developed a computer model of HF-SCS that consisted of two main components: 1) finite element models of the electric field generated during HF-SCS, and 2) multicompartment cable models of axons and motoneurons within the spinal cord. We systematically evaluated the neural recruitment during HF-SCS for several unique electrode designs and stimulation configurations to optimize activation of these neural elements. We then evaluated our predictions by testing two of these lead designs with in vivo canine experiments. RESULTS Our model results suggested that within physiological stimulation amplitudes, HF-SCS activates both axons in the ventrolateral funiculi (VLF) and inspiratory intercostal motoneurons. We used our model to predict a lead design to maximize HF-SCS activation of these neural targets. We evaluated this lead design via in vivo experiments, and our computational model predictions demonstrated excellent agreement with our experimental testing. CONCLUSIONS Our computational modeling and experimental results support the potential advantages of a lead design with longer contacts and larger edge-to-edge contact spacing to maximize inspiratory muscle activation during HF-SCS at the T2 spinal level. While these results need to be further validated in future studies, we believe that the results of this study will help improve the efficacy of HF-SCS technologies for inspiratory muscle pacing.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Anthony F DiMarco
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Jannesar S, Salegio EA, Beattie MS, Bresnahan JC, Sparrey CJ. Correlating Tissue Mechanics and Spinal Cord Injury: Patient-Specific Finite Element Models of Unilateral Cervical Contusion Spinal Cord Injury in Non-Human Primates. J Neurotrauma 2021; 38:698-717. [PMID: 33066716 PMCID: PMC8418518 DOI: 10.1089/neu.2019.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-human primate (NHP) models are the closest approximation of human spinal cord injury (SCI) available for pre-clinical trials. The NHP models, however, include broader morphological variability that can confound experimental outcomes. We developed subject-specific finite element (FE) models to quantify the relationship between impact mechanics and SCI, including the correlations between FE outcomes and tissue damage. Subject-specific models of cervical unilateral contusion SCI were generated from pre-injury MRIs of six NHPs. Stress and strain outcomes were compared with lesion histology using logit analysis. A parallel generic model was constructed to compare the outcomes of subject-specific and generic models. The FE outcomes were correlated more strongly with gray matter damage (0.29 < R2 < 0.76) than white matter (0.18 < R2 < 0.58). Maximum/minimum principal strain, Von-Mises and Tresca stresses showed the strongest correlations (0.31 < R2 < 0.76) with tissue damage in the gray matter while minimum principal strain, Von-Mises stress, and Tresca stress best predicted white matter damage (0.23 < R2 < 0.58). Tissue damage thresholds varied for each subject. The generic FE model captured the impact biomechanics in two of the four models; however, the correlations between FE outcomes and tissue damage were weaker than the subject-specific models (gray matter [0.25 < R2 < 0.69] and white matter [R2 < 0.06] except for one subject [0.26 < R2 < 0.48]). The FE mechanical outputs correlated with tissue damage in spinal cord white and gray matters, and the subject-specific models accurately mimicked the biomechanics of NHP cervical contusion impacts.
Collapse
Affiliation(s)
- Shervin Jannesar
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Ernesto A. Salegio
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Michael S. Beattie
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3005-3017. [DOI: 10.1089/neu.2018.5930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Jones CF, Clarke EC. Engineering approaches to understanding mechanisms of spinal column injury leading to spinal cord injury. Clin Biomech (Bristol, Avon) 2019; 64:69-81. [PMID: 29625748 DOI: 10.1016/j.clinbiomech.2018.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanical interactions occurring between the spinal column and spinal cord during an injury event are complex and variable, and likely have implications for the clinical presentation and prognosis of the individual. METHODS The engineering approaches that have been developed to better understand spinal column and cord interactions during an injury event are discussed. These include injury models utilising human and animal cadaveric specimens, in vivo anaesthetised animals, finite element models, inanimate physical systems and combinations thereof. FINDINGS The paper describes the development of these modelling approaches, discusses the advantages and disadvantages of the various models, and the major outcomes that have had implications for spinal cord injury research and clinical practice. INTERPRETATION The contribution of these four engineering approaches to understanding the interaction between the biomechanics and biology of spinal cord injury is substantial; they have improved our understanding of the factors contributing to the spinal column disruption, the degree of spinal cord deformation or motion, and the resultant neurological deficit and imaging features. Models of the injury event are challenging to produce, but technological advances are likely to improve these models and, consequently, our understanding of the mechanical context in which the biological injury occurs.
Collapse
Affiliation(s)
- Claire F Jones
- Spinal Research Group, Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Australia; School of Mechanical Engineering, The University of Adelaide, Australia
| | - Elizabeth C Clarke
- Institute for Bone and Joint Research, Kolling Institute, Sydney Medical School, University of Sydney, Australia.
| |
Collapse
|
9
|
Ramo NL, Troyer K, Puttlitz C. Comparing Predictive Accuracy and Computational Costs for Viscoelastic Modeling of Spinal Cord Tissues. J Biomech Eng 2019; 141:2727822. [PMID: 30835287 DOI: 10.1115/1.4043033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/08/2022]
Abstract
The constitutive equation used to characterize and model spinal tissues can significantly influence the conclusions from experimental and computational studies. Therefore, researchers must make critical judgements regarding the balance of computational efficiency and predictive accuracy necessary for their purposes. The objective of this study is to quantitatively compare the fitting and prediction accuracy of linear viscoelastic (LV), quasi-linear viscoelastic (QLV), and (fully) non-linear viscoelastic (NLV) modeling of spinal-cord-pia-arachnoid-construct (SCPC), isolated cord parenchyma, and isolated pia-arachnoid-complex (PAC) mechanics in order to better inform these judgements. Experimental data collected during dynamic cyclic testing of each tissue condition were used to fit each viscoelastic formulation. These fitted models were then used to predict independent experimental data from stress-relaxation testing. Relative fitting accuracy was found not to directly reflect relative predictive accuracy, emphasizing the need for material model validation through predictions of independent data. For the SCPC and isolated cord, the NLV formulation best predicted the mechanical response to arbitrary loading conditions, but required significantly greater computational run time. The mechanical response of the PAC under arbitrary loading conditions was best predicted by the QLV formulation.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Kevin Troyer
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| | - Christian Puttlitz
- School of Biomedical Engineering, Colorado State University, Department of Mechanical Engineering, Colorado State University, Department of Clinical Sciences, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| |
Collapse
|
10
|
Hunter CW, Carlson J, Yang A, Deer T. Spinal Cord Stimulation for the Treatment of Failed Neck Surgery Syndrome: Outcome of a Prospective Case Series. Neuromodulation 2018; 21:495-503. [DOI: 10.1111/ner.12769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ajax Yang
- Department of Physical Medicine & Rehabilitation, Ichan School of Medicine; Mount Sinai Hospital; New York NY USA
| | | |
Collapse
|
11
|
Khuyagbaatar B, Kim K, Man Park W, Hyuk Kim Y. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms. J Biomech Eng 2016; 138:2528303. [DOI: 10.1115/1.4033794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.
Collapse
Affiliation(s)
- Batbayar Khuyagbaatar
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| |
Collapse
|
12
|
Khuyagbaatar B, Kim K, Park WM, Kim YH. Influence of sagittal and axial types of ossification of posterior longitudinal ligament on mechanical stress in cervical spinal cord: A finite element analysis. Clin Biomech (Bristol, Avon) 2015; 30:1133-9. [PMID: 26351002 DOI: 10.1016/j.clinbiomech.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND There are few studies focusing on the prediction of stress distribution according to the types of ossification of the posterior longitudinal ligament, which can be fundamental information associated with clinical aspects such as the relationship between stress level and neurological symptom severity. In this study, the influence of sagittal and axial types of ossification of the posterior longitudinal ligament on mechanical stress in the cervical spinal cord was investigated. METHODS A three-dimensional finite element model of the cervical spine with spinal cord was developed and validated. The von Mises stresses in the cord and the reduction in cross-sectional areas and volume of the cord were investigated for various axial and sagittal types according to the occupying ratio of ossification of the posterior longitudinal ligament in the spinal canal. FINDINGS The influence of axial type was less than that of the sagittal type, even though the central type showed higher maximum stresses in the cord, especially for the continuous type. With a 60% occupying ratio of ossification of the posterior longitudinal ligament, the maximum stress was significantly high and the cross-sectional area of the spinal cord was reduced by more than 30% of the intact area regardless of sagittal or axial types. Finally, a higher level of sagittal extension would increase the peak cord tissue stress, which would be related to the neurological dysfunction and tissue damage. INTERPRETATION Quantitative investigation of biomechanical characteristics such as mechanical stress may provide fundamental information for pre-operative planning of treatment for ossification of the posterior longitudinal ligament.
Collapse
Affiliation(s)
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin, Korea
| | - Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea.
| |
Collapse
|
13
|
Alshareef M, Krishna V, Ferdous J, Alshareef A, Kindy M, Kolachalama VB, Shazly T. Effect of spinal cord compression on local vascular blood flow and perfusion capacity. PLoS One 2014; 9:e108820. [PMID: 25268384 PMCID: PMC4182502 DOI: 10.1371/journal.pone.0108820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.
Collapse
Affiliation(s)
- Mohammed Alshareef
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Vibhor Krishna
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Jahid Ferdous
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Ahmed Alshareef
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States of America
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States of America
| | | | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
14
|
Khuyagbaatar B, Kim K, Hyuk Kim Y. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: A finite element study. J Biomech 2014; 47:2820-5. [DOI: 10.1016/j.jbiomech.2014.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|