1
|
Bonuzzi GMG, Bastos FH, Schweighofer N, Wade E, Winstein CJ, Torriani-Pasin C. Moderate-intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age-matched neurotypical adults. Exp Brain Res 2023:10.1007/s00221-023-06659-w. [PMID: 37395857 DOI: 10.1007/s00221-023-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The acute impact of cardiovascular exercise on implicit motor learning of stroke survivors is still unknown. We investigated the effects of cardiovascular exercise on implicit motor learning of mild-moderately impaired chronic stroke survivors and neurotypical adults. We addressed whether exercise priming effects are time-dependent (e.g., exercise before or after practice) in the encoding (acquisition) and recall (retention) phases. Forty-five stroke survivors and 45 age-matched neurotypical adults were randomized into three sub-groups: BEFORE (exercise, then motor practice), AFTER (motor practice, then exercise), and No-EX (motor practice alone). All sub-groups practiced a serial reaction time task (five repeated and two pseudorandom sequences per day) on three consecutive days, followed 7 days later by a retention test (one repeated sequence). Exercise was performed on a stationary bike, (one 20-min bout per day) at 50% to 70% heart rate reserve. Implicit motor learning was measured as a difference score (repeated-pseudorandom sequence response time) during practice (acquisition) and recall (delayed retention). Separate analyses were performed on the stroke and neurotypical groups using linear mixed-effects models (participant ID was a random effect). There was no exercise-induced benefit on implicit motor learning for any sub-group. However, exercise performed before practice impaired encoding in neurotypical adults and attenuated retention performance of stroke survivors. There is no benefit to implicit motor learning of moderately intense cardiovascular exercise for stroke survivors or age-matched neurotypical adults, regardless of timing. Practice under a high arousal state and exercise-induced fatigue may have attenuated offline learning in stroke survivors.
Collapse
Affiliation(s)
- Giordano Marcio Gatinho Bonuzzi
- Department of Physical Education, State University of Piauí, Professor Barros Araújo Campus, BR-316, KM 299, Altamira, Picos, Piaui, 64602-000, Brazil.
- Department of Physical Education, Federal University of Vale Do São Francisco, Petrolina, Pernambuco, Brazil.
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, São Paulo, Brazil.
| | - Flavio Henrique Bastos
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Eric Wade
- Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Carolee Joyce Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Camila Torriani-Pasin
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, São Paulo, Brazil
- Neurorehabilitation, Exercise Science and Learning (NEUROEXCEL), Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
2
|
Wang F, Jiang Y, Hou L. Effects of different exercise intensities on motor skill learning capability and process. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
John AT, Barthel A, Wind J, Rizzi N, Schöllhorn WI. Acute Effects of Various Movement Noise in Differential Learning of Rope Skipping on Brain and Heart Recovery Analyzed by Means of Multiscale Fuzzy Measure Entropy. Front Behav Neurosci 2022; 16:816334. [PMID: 35283739 PMCID: PMC8914377 DOI: 10.3389/fnbeh.2022.816334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In search of more detailed explanations for body-mind interactions in physical activity, neural and physiological effects, especially regarding more strenuous sports activities, increasingly attract interest. Little is known about the underlying manifold (neuro-)physiological impacts induced by different motor learning approaches. The various influences on brain or cardiac function are usually studied separately and modeled linearly. Limitations of these models have recently led to a rapidly growing application of nonlinear models. This study aimed to investigate the acute effects of various sequences of rope skipping on irregularity of the electrocardiography (ECG) and electroencephalography (EEG) signals as well as their interaction and whether these depend on different levels of active movement noise, within the framework of differential learning theory. Thirty-two males were randomly and equally distributed to one of four rope skipping conditions with similar cardiovascular but varying coordinative demand. ECG and EEG were measured simultaneously at rest before and immediately after rope skipping for 25 mins. Signal irregularity of ECG and EEG was calculated via the multiscale fuzzy measure entropy (MSFME). Statistically significant ECG and EEG brain area specific changes in MSFME were found with different pace of occurrence depending on the level of active movement noise of the particular rope skipping condition. Interaction analysis of ECG and EEG MSFME specifically revealed an involvement of the frontal, central, and parietal lobe in the interplay with the heart. In addition, the number of interaction effects indicated an inverted U-shaped trend presenting the interaction level of ECG and EEG MSFME dependent on the level of active movement noise. In summary, conducting rope skipping with varying degrees of movement variation appears to affect the irregularity of cardiac and brain signals and their interaction during the recovery phase differently. These findings provide enough incentives to foster further constructive nonlinear research in exercise-recovery relationship and to reconsider the philosophy of classical endurance training.
Collapse
Affiliation(s)
- Alexander Thomas John
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | |
Collapse
|
4
|
Bonuzzi GMG, Torriani-Pasin C. Cardiovascular exercise and motor learning in non-disabled individuals: A systematic review with a behavioral emphasis. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-65742022005221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Pixa NH, Hübner L, Kutz DF, Voelcker-Rehage C. A Single Bout of High-Intensity Cardiovascular Exercise Does Not Enhance Motor Performance and Learning of a Visuomotor Force Modulation Task, but Triggers Ipsilateral Task-Related EEG Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12512. [PMID: 34886237 PMCID: PMC8657224 DOI: 10.3390/ijerph182312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Acute cardiovascular exercise (aCE) seems to be a promising strategy to improve motor performance and learning. However, results are heterogeneous, and the related neurophysiological mechanisms are not well understood. Oscillatory brain activitiy, such as task-related power (TRPow) in the alpha and beta frequencies, are known neural signatures of motor activity. Here, we tested the effects of aCE on motor performance and learning, along with corresponding modulations in EEG TRPow over the sensorimotor cortex. Forty-five right-handed participants (aged 18-34 years) practiced a visuomotor force-matching (FM) task after either high-intensity (HEG), low-intensity (LEG), or no exercise (control group, CG). Motor performance was assessed immediately, 15 min, 30 min, and 24 h after aCE/control. EEG was measured during the FM task. Results of frequentist and Bayesian statistics revealed that high- and low-intensity aCE had no effect at the behavioral level, adding to the previous mixed results. Interestingly, EEG analyses showed an effect of aCE on the ipsilateral sensorimotor cortex, with a stronger decrease in β-TRPow 15 min after exercise in both groups compared to the CG. Overall, aCE applied before motor practice increased ipsilateral sensorimotor activity, while motor learning was not affected; it remains to be seen whether aCE might affect motor learning in the long run.
Collapse
Affiliation(s)
- Nils Henrik Pixa
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Lena Hübner
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| | - Dieter F. Kutz
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| |
Collapse
|
6
|
Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, Steib S. Acute exercise following skill practice promotes motor memory consolidation in Parkinson's disease. Neurobiol Learn Mem 2020; 178:107366. [PMID: 33358765 DOI: 10.1016/j.nlm.2020.107366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Acute cardiovascular exercise has shown to promote neuroplastic processes supporting the consolidation of newly acquired motor skills in healthy adults. First results suggest that this concept may be transferred to populations with motor and cognitive dysfunctions. In this context, Parkinson's disease (PD) is highly relevant since patients demonstrate deficits in motor learning. Hence, in the present study we sought to explore the effect of a single post-practice exercise bout on motor memory consolidation in PD. For this purpose, 17 patients with PD (Hoehn and Yahr: 1 - 2.5, age: 60.1 ± 7.9 y) practiced a whole-body skill followed by either (i) a moderate-intense bout of cycling, or (ii) seated rest for a total of 30 min. The motor skill required the participants to balance on a tiltable platform (stabilometer) for 30 s. During skill practice, participants performed 15 trials followed by a retention test 1 day and 7 days later. We calculated time in balance (platform within ± 5° from horizontal) for each trial and within- and between-group differences in memory consolidation (i.e. offline learning = skill change from last acquisition block to retention tests) were analyzed. Groups revealed similar improvements during skill practice (F4,60 = 0.316, p = 0.866), but showed differences in offline learning, which were only evident after 7 days (F1,14 = 5.602, p = 0.033). Our results suggest that a single post-practice exercise bout is effective in enhancing long-term motor memory consolidation in a population with motor learning impairments. This may point at unique promoting effects of exercise on dopamine neurotransmission involved in memory formation. Future studies should investigate the potential role of exercise-induced effects on the dopaminergic system.
Collapse
Affiliation(s)
- Philipp Wanner
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | | | - Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Klaus Pfeifer
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Simon Steib
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany; Institute of Sports and Sports Sciences, Human Movement, Training and Active Aging Department, Heidelberg University, Germany.
| |
Collapse
|
7
|
Marchant D, Hampson S, Finnigan L, Marrin K, Thorley C. The Effects of Acute Moderate and High Intensity Exercise on Memory. Front Psychol 2020; 11:1716. [PMID: 32765381 PMCID: PMC7381212 DOI: 10.3389/fpsyg.2020.01716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Acute cardiovascular exercise can enhance correct remembering but its impact upon false remembering is less clear. In two experiments, we investigated the effect of acute bouts of exercise on correct and false remembering using the Deese–Roediger–McDermott (DRM) memory test. In Experiment 1, healthy adults completed quiet rest or moderate intensity cycling prior to the memory test. In Experiment 2, a similar sample completed moderate intensity running, high intensity sprints, or a period of quiet rest prior to the memory test. In Experiment 1, acute moderate intensity exercise increased short-term correct, but not false, recall. Experiment 2 replicated these findings but also found an acute bout of high intensity exercise had no impact upon either type of short-term recall. Acute moderate intensity exercise, but not acute high intensity exercise, can improve short-term correct recall without an accompanying increase in false recall potentially through processing of contextually specific information during encoding.
Collapse
Affiliation(s)
- David Marchant
- Psychology of Sport, Exercise and Movement Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Sophie Hampson
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Lucy Finnigan
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kelly Marrin
- Psychology of Sport, Exercise and Movement Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Craig Thorley
- Department of Psychology, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
8
|
Wanner P, Cheng FH, Steib S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 116:365-381. [PMID: 32565171 DOI: 10.1016/j.neubiorev.2020.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that acute bouts of cardiovascular exercise promote motor memory formation. In this preregistered meta-analysis (CRD42018106288) we synthesize data from 22 studies published until February 2020, including a total of 862 participants. We calculated standardized mean differences (SMDs) with 95 % confidence intervals (CIs) to assess exercise effects on motor memory encoding and consolidation, respectively. The pooled data indicate that exercise mainly benefits the consolidation of memories, with exercise prior to motor practice improving early non-sleep consolidation (SMD, 0.58; 95 % CI, 0.30-0.86; p < 0.001), and post-practice exercise facilitating sleep-dependent consolidation (SMD, 0.62; 95 % CI, 0.34-0.90; p < 0.001). Strongest effects exist for high exercise intensities, and motor task nature appears to be another relevant modulator. We demonstrate that acute cardiovascular exercise particularly promotes the consolidation of acquired motor memories, and exercise timing, and intensity as well as motor task nature seem to critically modulate this relationship. These findings are discussed within currently proposed models of motor memory formation and considering molecular and systemic mechanisms of neural plasticity.
Collapse
Affiliation(s)
- Philipp Wanner
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany
| | - Fei-Hsin Cheng
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany
| | - Simon Steib
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany; Department of Sport and Health Sciences, Chair of Human Movement Science, Technical University of Munich, Georg-Brauchle-Ring 60/ 62, 80992 Munich, Germany.
| |
Collapse
|
9
|
Bonuzzi GMG, Alves ÉJM, Perotti Junior A. Effects of the aerobic exercise on the learning of a sports motor skill. MOTRIZ: REVISTA DE EDUCACAO FISICA 2020. [DOI: 10.1590/s1980-6574202000011420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Alaercio Perotti Junior
- Centro Universitário Hermínio Ometto, Brasil; Faculdades Integradas Einstein de Limeira, Brasil
| |
Collapse
|
10
|
The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. J Clin Med 2019; 8:jcm8050578. [PMID: 31035583 PMCID: PMC6572639 DOI: 10.3390/jcm8050578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
When aerobic exercise is performed following skilled motor practice, it can enhance motor memory consolidation. Previous studies have suggested that dopamine may play a role in motor memory consolidation, but whether it is involved in the exercise effects on consolidation is unknown. Hence, we aimed to investigate the influence of dopaminergic pathways on the exercise-induced modulation of motor memory consolidation. We compared the effect of acute exercise on motor memory consolidation between the genotypes that are known to affect dopaminergic transmission and learning. By combining cluster analyses and fitting linear models with and without included polymorphisms, we provide preliminary evidence that exercise benefits the carriers of alleles that are associated with low synaptic dopamine content. In line with previous reports, our findings implicate dopamine as a modulator of the exercise-induced effects on motor memory consolidation, and suggest exercise as a potential clinical tool to counteract low endogenous dopamine bioavailability. Further experiments are needed to establish causal relations.
Collapse
|
11
|
Loprinzi PD, Blough J, Crawford L, Ryu S, Zou L, Li H. The Temporal Effects of Acute Exercise on Episodic Memory Function: Systematic Review with Meta-Analysis. Brain Sci 2019; 9:brainsci9040087. [PMID: 31003491 PMCID: PMC6523402 DOI: 10.3390/brainsci9040087] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Accumulating research demonstrates that the timing of exercise plays an important role in influencing episodic memory. However, we have a limited understanding as to the factors that moderate this temporal effect. Thus, the purpose of this systematic review with meta-analysis was to evaluate the effects of study characteristics (e.g., exercise modality, intensity and duration of acute exercise) and participant attributes (e.g., age, sex) across each of the temporal periods of acute exercise on episodic memory (i.e., acute exercise occurring before memory encoding, and during memory encoding, early consolidation, and late consolidation). Methods: The following databases were used for our computerized searches: Embase/PubMed, Web of Science, Google Scholar, Sports Discus and PsychInfo. Studies were included if they: (1) Employed an experimental design with a comparison to a control group/visit, (2) included human participants, (3) evaluated exercise as the independent variable, (4) employed an acute bout of exercise (defined as a single bout of exercise), (5) evaluated episodic memory as the outcome variable (defined as the retrospective recall of information either in a spatial or temporal manner), and (6) provided sufficient data (e.g., mean, SD, and sample size) for a pooled effect size estimate. Results: In total, 25 articles met our inclusionary criteria and were meta-analyzed. Acute exercise occurring before memory encoding (d = 0.11, 95% CI: −0.01, 0.23, p = 0.08), during early memory consolidation (d = 0.47, 95% CI: 0.28, 0.67; p < 0.001) and during late memory consolidation (d = 1.05, 95% CI: 0.32, 1.78; p = 0.005) enhanced episodic memory function. Conversely, acute exercise occurring during memory encoding had a negative effect on episodic memory (d = −0.12, 95% CI: −0.22, −0.02; p = 0.02). Various study designs and participant characteristics moderated the temporal effects of acute exercise on episodic memory function. For example, vigorous-intensity acute exercise, and acute exercise among young adults, had greater effects when the acute bout of exercise occurred before memory encoding or during the early memory consolidation period. Conclusions: The timing of acute exercise plays an important role in the exercise-memory interaction. Various exercise- and participant-related characteristics moderate this temporal relationship.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| | - Jeremiah Blough
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| | - Lindsay Crawford
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| | - Seungho Ryu
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| | - Liye Zou
- Lifestyle (Mind-Body Movement) Research Center, College of Sport Science, Shenzhen University, Shenzhen 518060, China.
| | - Hong Li
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, College of Psychology and Sociology, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| |
Collapse
|
12
|
Loprinzi PD. An integrated model of acute exercise on memory function. Med Hypotheses 2019; 126:51-59. [PMID: 31010500 DOI: 10.1016/j.mehy.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
Abstract
Memory is a complex cognition that plays a critical role in daily functioning. This review discusses the dynamic effects of acute exercise on memory function, via a hypothesized exercise-memory interaction model, taking into consideration multiple memory systems and exercise parameters.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
13
|
John A, Schöllhorn WI. Acute Effects of Instructed and Self-Created Variable Rope Skipping on EEG Brain Activity and Heart Rate Variability. Front Behav Neurosci 2018; 12:311. [PMID: 30618664 PMCID: PMC6297186 DOI: 10.3389/fnbeh.2018.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The influence of physical activity on brain and heart activity dependent on type and intensity of exercise is meanwhile widely accepted. Mainly cyclic exercises with longer duration formed the basis for showing the influence on either central nervous system or on heart metabolism. Effects of the variability of movement sequences on brain and heart have been studied only sparsely so far. This study investigated effects of three different motor learning approaches combined with a single bout of rope skipping exercises on the spontaneous electroencephalographic (EEG) brain activity, heart rate variability (HRV) and the rate of perceived exertion (RPE). Participants performed repetitive learning (RL) and two extremely variable rope skipping schedules according to the differential learning approach. Thereby one bout was characterized by instructed variable learning (DLi) and the other by self-created variable learning (DLc) in randomized order each on three consecutive days. The results show higher RPE after DLi and DLc than after RL. HRV analysis demonstrates significant changes in pre-post exercise comparison in all training approaches. No statistically significant differences between training schedules were identified. Slightly greater changes in HRV parameters were observed in both DL approaches indicating a higher activation of the sympathetic nervous system. EEG data reveals higher parietal alpha1 and temporal alpha2 power in RL compared to both DL schedules immediately post exercise. During the recovery of up to 30 min, RL shows higher temporal and occipital theta, temporal, parietal and occipital alpha, temporal and occipital beta and frontal beta3 power. In conclusion, already a single bout of 3 min of rope skipping can lead to brain states that are associated with being advantageous for cognitive learning. Combined with additional, cognitively demanding tasks in form of the DL approach, it seems to lead to an overload of the mental capacity, at least on the short term. Further research should fathom the reciprocal influence of cardiac and central-nervous strain in greater detail.
Collapse
Affiliation(s)
- Alexander John
- Institute of Sport Science, Training and Movement Science, University of Mainz, Mainz, Germany
| | - Wolfgang I Schöllhorn
- Institute of Sport Science, Training and Movement Science, University of Mainz, Mainz, Germany
| |
Collapse
|