1
|
Muanjai P, Haas C, Sies W, Mittag U, Zange J, Schönau E, Duran I, Kamandulis S, Rittweger J. Effect of Whole-body Vibration frequency on muscle tensile state during graded plantar flexor isometric contractions. J Exerc Sci Fit 2023; 21:405-415. [PMID: 37965131 PMCID: PMC10641229 DOI: 10.1016/j.jesf.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Background Acute physiological and biomechanical alterations have been reported following whole-body vibration (WBV). Stiffening of muscles has only been anecdotally reported in response to WBV. Accordingly, this study investigated active plantar flexor muscle stiffness in response to a single WBV bout at four mechanical vibration frequencies. Methods Thirteen healthy adults (37.1 ± 14.4 years old) randomly received WBV in 4 different frequencies (6, 12, 24, and 0 Hz control) for 5 min. Shear wave speed (SWS) in longitudinal and transverse projections, architecture, and electric muscle activity were recorded in the medial gastrocnemius (MG) and soleus (SOL) muscle during graded plantar flexor contraction. Subjective rating of perceived muscle stiffness was assessed via Likert-scale. Results SWS of the MG at rest was enhanced in response to 5 min of 24 Hz WBV (p = 0.025), while a small reduction in SOL SWS was found during contraction (p = 0.005) in the longitudinal view. Subjective stiffness rating was increased following 12 Hz intervention. After 24 Hz WBV, pennation angle for MG was decreased (p = 0.011) during contraction. As a secondary finding, plantar flexor strength was significantly increased with each visit, which, however, did not affect the study's main outcome because of balanced sequence allocation. Conclusion SWS effects were solely limited to 24 Hz mechanical vibration and in the longitudinal projection. The observed effects are compatible with an interpretation by post-activation potentiation, warm-up, and force-distribution within the triceps surae muscles following 5 min WBV. The outcome may suggest SWS as a useful tool for assessing acute changes in muscle stiffness.
Collapse
Affiliation(s)
- Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| | - Chris Haas
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Uwe Mittag
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Eckhard Schönau
- Center of Prevention and Rehabilitation, Cologne University Hospital and Medical Faculty, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, Cologne University Hospital and Medical Faculty, Germany
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Kopecká B, Ravnik D, Jelen K, Bittner V. Objective Methods of Muscle Tone Diagnosis and Their Application-A Critical Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7189. [PMID: 37631726 PMCID: PMC10458714 DOI: 10.3390/s23167189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
"Muscle tone" is a clinically important and widely used term and palpation is a crucial skill for its diagnosis. However, the term is defined rather vaguely, and palpation is not measurable objectively. Therefore, several methods have been developed to measure muscle tone objectively, in terms of biomechanical properties of the muscle. This article aims to summarize these approaches. Through database searches, we identified those studies related to objective muscle tone measurement in vivo, in situ. Based on them, we described existing methods and devices and compared their reliability. Furthermore, we presented an extensive list of the use of these methods in different fields of research. Although it is believed by some authors that palpation cannot be replaced by a mechanical device, several methods have already proved their utility in muscle biomechanical property diagnosis. There appear to be two issues preventing wider usage of these objective methods in clinical practice. Firstly, a high variability of their reliability, and secondly, a lack of valid mathematical models that would provide the observed mechanical characteristics with a clear physical significance and allow the results to be compared with each other.
Collapse
Affiliation(s)
- Barbora Kopecká
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - David Ravnik
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Karel Jelen
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - Václav Bittner
- Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
3
|
Guedes-Aguiar EDO, Taiar R, Paineiras-Domingos LL, Monteiro-Oliveira BB, da Cunha de Sá-Caputo D, Bernardo-Filho M. Effects of a Single Session of Systemic Vibratory Therapy on Flexibility, Perception of Exertion and Handgrip Strength in Chronic Obstructive Pulmonary Disease Individuals: A Quasi-Experimental Clinical Trial. J Clin Med 2023; 12:jcm12093241. [PMID: 37176687 PMCID: PMC10179630 DOI: 10.3390/jcm12093241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Whole-body vibration exercises (WBVE), that are generated in systemic vibratory therapy (SVT), may benefit individuals with chronic obstructive pulmonary disease (COPD). This study evaluated acute effects of SVT on the flexibility, on the perception of exertion to perform the anterior trunk flexion (ATF), and on the handgrip strength (HG). METHODS Thirty-eight individuals, separated into two groups, performed a single session of SVT (five bouts, 25 Hz, 2.5 of amplitude) on a side-alternating vibrating platform (SAVP), in two postures: sitting (Sitting group-SitG, n = 21) or standing (Stand group-StandG, n = 17). In both positions, the feet were on the base of the SAVP. The HG and the AFT were performed before and after the session, and the perception of effort (RPE) was measured during the ATF. RESULTS The ATF in the SitG (p ≤ 0.05) and in the StandG (p ≤ 0.05) was significantly improved, but in the comparison between both groups, no significant reduction was found (p = 0.14). The RPE was not influenced by the session. A significant increase of the HG in StandG post session (33.49 ± 10.30 kgf) p = 0.03 was found, but not in the SitG (p = 0.12) or between the two groups (p = 0.55). CONCLUSIONS SVT, in a single acute session, would be capable of promoting some functional benefits for the COPD individuals without altering the perception of exertion to perform the ATF. TRIAL REGISTRATION 49219115.3.0000.5259, RBR-72dqtm.
Collapse
Affiliation(s)
- Eliane de Oliveira Guedes-Aguiar
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Redha Taiar
- MATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Laisa Liane Paineiras-Domingos
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
- Departamento de Fisioterapia, Instituto Multidisciplinar de Reabilitação e Saúde, Universidade Federal da Bahia, Salvador 40210-905, Brazil
| | - Bruno Bessa Monteiro-Oliveira
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| |
Collapse
|
4
|
The Effects of Vibration Exposure on Lower-Limb Extensor Muscles' Stiffness, Elasticity, and Strength Responses in Untrained Young Individuals: A Randomized Controlled Trial. J Sport Rehabil 2023; 32:415-423. [PMID: 36708713 DOI: 10.1123/jsr.2022-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The whole-body vibration (WBV) effects on muscle strength show inconsistent results. Moreover, there is no study about the WBV effect on stiffness, elasticity, and muscle strength. Therefore, the study aimed to examine the effect of WBV exposure with static squat posture on the stiffness, elasticity, and strength of the lower-limb extensor muscles. MATERIAL AND METHODS Forty healthy untrained young adults were divided into WBV and control groups. The experimental group received WBV exposure on 2 nonconsecutive days of the week, for 6 weeks. The MyotonPRO device was used for the assessment of the knee extensor and the ankle dorsiflexors' stiffness and elasticity. Isometric muscle strength was evaluated with a hand-held dynamometer. All measurements were done by the same assessor at baseline, and the following 6 weeks. RESULTS Significant group-by-time interactions were found for the elasticity scores of the right (d = 0.84, P = .01) and left (d = 0.77, P = .02) ankle dorsiflexors. Similar to the elasticity measurements, significant group-by-time interactions were observed in the muscle strength scores of the right (d = 0.45, P = .046) and left (d = 1.25, P < .001) ankle dorsiflexors. No significant effects were observed in any of the evaluated muscle stiffness measurements (P > .05), and there was no significant group-by-time interaction in knee-extensor muscle strength and elasticity scores (P > .05). CONCLUSIONS The study results indicate that if the ankle dorsiflexor strength and elasticity are desired to be increased, the 6-week WBV exposure in a static squat posture can be used in healthy individuals.
Collapse
|
5
|
Fiorilli G, Quinzi F, Buonsenso A, Casazza G, Manni L, Parisi A, Di Costanzo A, Calcagno G, Soligo M, di Cagno A. A Single Session of Whole-Body Electromyostimulation Increases Muscle Strength, Endurance and proNGF in Early Parkinson Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5499. [PMID: 34065571 PMCID: PMC8161270 DOI: 10.3390/ijerph18105499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) patients lead a sedentary lifestyle, being unable or unwilling to exercise conventionally, due to physical and mental limitations. The aim of this study was to assess the acute effects of a single session of whole-body electromyostimulation (WB-EMS) on the physical performances and serum levels of the neurotrophic factors in PD patients. Ten subjects (aged 72.60 ± 6.82) underwent 20 min of physical activity with superimposed WB-EMS and, after four weeks, the same protocol with no WB-EMS. WB-EMS was conducted with intermittent stimulation, with 4 s WB-EMS/4 s rest, at 85 Hz, 350 μs. A physical fitness assessment and blood samples collection, to evaluate neurotrophic factors' levels (BDNF, FGF21, proNGF, mNGF), were collected before and after the intervention. The RM-ANOVA showed significant improvements in sit-to-stand (p < 0.01), arm curl (p < 0.01), handgrip (p < 0.01) and soda pop test (p < 0.01) after the WB-EMS intervention. Higher proNFG serum levels were observed in the WB-EMS condition compared to the no WB-EMS after 60 min post-intervention (p = 0.0163). The effect of WB-EMS confirmed the electrostimulation ability to modulate the proNGF quantity. The positive impact of the WB-EMS protocol on physical functioning, and eye-hand coordination, makes this intervention a promising strategy to improve motor and non-motor symptoms in PD patients.
Collapse
Affiliation(s)
- Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Federico Quinzi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giusy Casazza
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Luigi Manni
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Attilio Parisi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Alessandra di Cagno
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| |
Collapse
|