1
|
Si P, Zou J, Dou Y, Zeng Q, Wu Y, Long Z, Cai Y, Hu J, Wu X, Huang G, Li H, Zhang D. Ionic aggregates induced room temperature autonomous self-healing elastic tape for reducing ankle sprain. J Colloid Interface Sci 2025; 678:819-828. [PMID: 39312870 DOI: 10.1016/j.jcis.2024.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Traditional kinesiology tape (KT) is an elastic fabric tape that clinicians and sports trainers widely use for managing ankle sprains. However, inadequate mechanical properties, adhesive strength, water resistance, and micro-damage generation could affect the longevity of the tape on the skin during physical activity and sweating. Therefore, autonomous room-temperature self-healing elastomers with robust mechanical properties and adequate adhesion to the skin are highly desirable to replace traditional KT. Ionic aggregates were introduced into the polymer matrix via electrostatic attraction between polymer colloid and polyelectrolyte to achieve such elastic tape. These ionic aggregates act as physical crosslink points to enhance mechanical properties and dissociate at room temperature to provide self-healing functions. The obtained elastic tape possesses a tensile strength of 3.7 MPa, elongation of 940 %, toughness of 16.6 MJ∙m-3, and self-healing efficiency of 90 % for 2 h at room temperature. It also exhibits adequate reversible adhesion on the skin via van der Waals force and electrostatic interaction in both dry and wet conditions. The new elastic tapes have great potential in biomedical engineering for preventing and rehabilitating ankle sprain.
Collapse
Affiliation(s)
- Pengxiang Si
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yefan Dou
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yun Wu
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Xuan Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China.
| | - Haoxuan Li
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Dan Zhang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| |
Collapse
|