1
|
Sherman DA, Rush J, Glaviano NR, Norte GE. Knee joint pathology and efferent pathway dysfunction: Mapping muscle inhibition from motor cortex to muscle force. Musculoskelet Sci Pract 2024; 74:103204. [PMID: 39426249 DOI: 10.1016/j.msksp.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Dysfunction in efferent pathways after knee pathology is tied to long-term impairments in quadriceps and hamstrings muscle performance, daily function, and health-related quality of life. Understanding the underlying etiology is crucial for effective treatment and prevention of poor outcomes, such as post-traumatic osteoarthritis or joint replacement. OBJECTIVES To synthesize recent evidence of efferent pathway dysfunction (i.e., motor cortex, motor units) among individuals with knee pathology. DESIGN Commentary. METHOD We summarize the current literature investigating the motor cortex, corticospinal tract, and motoneuron pool in individuals with three common knee pathologies: anterior cruciate ligament (ACL) injury, anterior knee pain (AKP), and knee osteoarthritis (OA). To offer a complete perspective, we draw from studies applying a range of neuroimaging and neurophysiologic techniques. RESULTS Adaptations within the motor cortices, corticospinal tract, and motoneuron pool are present in those with knee pathology and underline impairments in quadriceps and hamstrings muscle function. Each pathology has evidence of altered motor system excitability and reduced volitional muscle activation and force-generating capacity, but few impairments were common across ACL injury, AKP, and OA studies. These findings underscore the central role of the motor cortex and motor unit behavior in the long-term outcomes of individuals with knee pathology. CONCLUSIONS Adaptations in the efferent pathways underlie persistent muscle dysfunction across three common knee pathologies. This review provides an overview of these changes and summarizes key findings from neurophysiology and neuroimaging studies, offering direction for future research and clinical application in the rehabilitation of joint injuries.
Collapse
Affiliation(s)
- David A Sherman
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, USA; Live4 Physical Therapy and Wellness, Acton, MA, USA.
| | - Justin Rush
- Neuromuscular Biomechanics and Health Assessment Lab, College of Health Sciences and Professions, Ohio University, Athens, OH, USA; Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Neal R Glaviano
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA; Institute for Sports Medicine, University of Connecticut, Storrs, CT, USA.
| | - Grant E Norte
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Dos Anjos T, Gabriel F, Vieira TD, Hopper GP, Sonnery-Cottet B. Neuromotor Treatment of Arthrogenic Muscle Inhibition After Knee Injury or Surgery. Sports Health 2024; 16:383-389. [PMID: 37102673 PMCID: PMC11025506 DOI: 10.1177/19417381231169285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Persistent weakness of the quadriceps muscles and extension deficit after knee injuries are due to specific alterations in neural excitability - a process known as arthrogenic muscle inhibition (AMI). The effects of a novel neuromotor reprogramming (NR) treatment based on the use of proprioceptive sensations associated with motor imagery and low frequency sounds have not been studied in AMI after knee injuries. HYPOTHESIS This study aimed to assess quadriceps electromyographic (EMG) activity and the effects on extension deficits in persons with AMI who completed 1 session of NR treatment. We hypothesized that the NR session would activate the quadriceps and improve extension deficits. STUDY DESIGN Case series. LEVEL OF EVIDENCE Level 4. METHODS Between May 1, 2021 and February 28, 2022, patients who underwent knee ligament surgery or sustained a knee sprain with a deficit of >30% of the vastus medialis oblique (VMO) on EMG testing in comparison with the contralateral limb after their initial rehabilitation were included in the study. The maximal voluntary isometric contraction of the VMO measured on EMG, the knee extension deficit (distance between the heel and the table during contraction), and the simple knee value (SKV) were assessed before and immediately after completion of 1 session of NR treatment. RESULTS A total of 30 patients with a mean age of 34.6 ± 10.1 years (range, 14-50 years) were included in the study. After the NR session, VMO activation increased significantly, with a mean increase of 45% (P < 0.01). Similarly, the knee extension deficit significantly improved from 4.03 ± 0.69 cm before the treatment to 1.93 ± 0.68 after the treatment (P < 0.01). The SKV was 50 ± 5.43% before the treatment, and this increased to 67.5 ± 4.09% after the treatment (P < 0.01). CONCLUSION Our study indicates that this innovative NR method can improve VMO activation and extension deficits in patients with AMI. Therefore, this method could be considered a safe and reliable treatment modality in patients with AMI after knee injury or surgery. CLINICAL RELEVANCE This multidisciplinary treatment modality for AMI can enhance outcomes through the restoration of quadriceps neuromuscular function and subsequent reduction of extension deficits after knee trauma.
Collapse
Affiliation(s)
- Typhanie Dos Anjos
- Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne Cedex, France
- ALLYANE, Lyon, France
| | | | - Thais Dutra Vieira
- Centre Orthopédique Santy, FIFA Medical Centre of Excellence, Groupe Ramsay-Générale de Santé, Hopital Privé Jean Mermoz, Lyon, France
| | - Graeme Philip Hopper
- Centre Orthopédique Santy, FIFA Medical Centre of Excellence, Groupe Ramsay-Générale de Santé, Hopital Privé Jean Mermoz, Lyon, France
| | - Bertrand Sonnery-Cottet
- Centre Orthopédique Santy, FIFA Medical Centre of Excellence, Groupe Ramsay-Générale de Santé, Hopital Privé Jean Mermoz, Lyon, France
| |
Collapse
|
3
|
Dong S, Liu Y, Liu Z, Shen P, Sun H, Zhang P, Fong DTP, Song Q. Can Arthrogenic Muscle Inhibition Exist in Peroneal Muscles Among People with Chronic Ankle Instability? A Cross-sectional Study. SPORTS MEDICINE - OPEN 2024; 10:35. [PMID: 38598018 PMCID: PMC11006644 DOI: 10.1186/s40798-024-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Ankle sprains lead to an unexplained reduction of ankle eversion strength, and arthrogenic muscle inhibition (AMI) in peroneal muscles is considered one of the underlying causes. This study aimed to observe the presence of AMI in peroneal muscles among people with chronic ankle instability (CAI). METHODS Sixty-three people with CAI and another sixty-three without CAI conducted maximal voluntary isometric contraction (MVIC) and superimposed burst (SIB) tests during ankle eversion, then fifteen people with CAI and fifteen without CAI were randomly invited to repeat the same tests to calculate the test-retest reliability. Electrical stimulation was applied to the peroneal muscles while the participants were performing MVIC, and the central activation ratio (CAR) was obtained by dividing MVIC torque by the sum of MVIC and SIB torques, representing the degree of AMI. RESULTS The intra-class correlation coefficients were 0.77 (0.45-0.92) and 0.92 (0.79-0.97) for the affected and unaffected limbs among people with CAI, and 0.97 (0.91-0.99) and 0.93 (0.82-0.97) for the controlled affected and unaffected limbs among people without CAI; Significant group × limb interaction was detected in the peroneal CAR (p = 0.008). The CARs were lower among people with CAI in the affected and unaffected limbs, compared with those without CAI (affected limb = 82.54 ± 9.46%, controlled affected limb = 94.64 ± 6.37%, p < 0.001; unaffected limb = 89.21 ± 8.04%, controlled unaffected limb = 94.93 ± 6.01%, p = 0.016). The CARs in the affected limbs were lower than those in the unaffected limbs among people with CAI (p = 0.023). No differences between limbs were found for CAR in the people without CAI (p = 0.10). CONCLUSIONS Bilateral AMI of peroneal muscles is observed among people with CAI. Their affected limbs have higher levels of AMI than the unaffected limbs.
Collapse
Affiliation(s)
- Shiyu Dong
- College of Sports and Health, Shandong Sport University, Jinan, 250102, Shandong, China
| | - Yanhao Liu
- College of Sports and Health, Shandong Sport University, Jinan, 250102, Shandong, China
| | - Ziyin Liu
- College of Sports and Health, Shandong Sport University, Jinan, 250102, Shandong, China
| | - Peixin Shen
- College of Sports and Health, Shandong Sport University, Jinan, 250102, Shandong, China
| | - Hao Sun
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Ping Zhang
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan, 250102, Shandong, China.
| |
Collapse
|
4
|
Labanca L, Tedeschi R, Mosca M, Benedetti MG. Individuals With Chronic Ankle Instability Show Abnormalities in Maximal and Submaximal Isometric Strength of the Knee Extensor and Flexor Muscles. Am J Sports Med 2024; 52:1328-1335. [PMID: 38459686 PMCID: PMC10986150 DOI: 10.1177/03635465241232090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 03/10/2024]
Abstract
BACKGROUND It has been shown that chronic ankle instability (CAI) leads to abnormalities in neuromuscular control of more proximal joints than the ankle. Although strength of the hip and the ankle muscles has been largely investigated providing concordant results, limited evidence with contrasting results has been reported regarding knee extensor and flexor muscles. PURPOSE To investigate maximal and submaximal isometric muscle strength in individuals with CAI. STUDY DESIGN Controlled laboratory study. METHODS Fifteen participants with unilateral CAI and 15 healthy matched controls were recruited. To quantify maximal strength, peak forces were recorded during a maximal isometric voluntary contraction of knee extensor and flexor muscles at 30° and 90° of knee flexion and normalized by the body weight of each participant. At both angles, submaximal isometric contractions at 20%, 50%, and 80% of the maximal voluntary isometric contraction were performed to analyze strength steadiness, in terms of coefficient of variation, and strength accuracy, in terms of absolute error. During all the assessments, knee extensor and flexor muscle activation was recorded by means of surface electromyography. RESULTS Knee flexor maximal isometric strength was significantly lower in the injured limb of individuals with CAI in comparison with healthy controls at both 30° (0.15 ± 0.05 vs 0.20 ± 0.05; P < .05) and 90° (0.14 ± 0.04 vs 0.18 ± 0.05; P < .05). Knee extensor and flexor steadiness was significantly lower (higher coefficient of variation) in both the injured and the noninjured limbs of individuals with CAI in comparison with healthy individuals at 90° and at 30° for knee flexor steadiness of the injured limb. Knee extensor and flexor accuracy was lower (higher absolute error) in both the injured and noninjured limbs of individuals with CAI in comparison with healthy individuals, mainly at 30°, while at 90° it was lower only in the injured limb. No differences between the 2 groups were found for maximal isometric strength of knee extensor muscles, as well as for muscle activations. CONCLUSION Individuals with CAI show abnormalities in maximal and submaximal isometric strength of knee flexor muscles, and submaximal strength of the knee extensor muscles. Further studies should deeply investigate mechanisms leading to these abnormalities. CLINICAL RELEVANCE Rehabilitation interventions should consider abnormalities of neuromuscular control affecting joints more proximal than the ankle in individuals with CAI. REGISTRATION NCT05273177 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Luciana Labanca
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberto Tedeschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopaedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Guzmán-Muñoz E, Mendez-Rebolledo G, Sazo-Rodriguez S, Salazar-Méndez J, Valdes-Badilla P, Nuñez-Espinosa C, Herrera-Valenzuela T. Quadriceps muscle reaction time in obese children. PeerJ 2024; 12:e17050. [PMID: 38436003 PMCID: PMC10909349 DOI: 10.7717/peerj.17050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
This study aimed to determine the influence of obesity, according to body mass index (BMI) and fat mass percentage, on quadriceps muscle reaction times. The study utilized a cross-sectional design. The sample size consisted of 42 schoolchildren (54.5% girls) aged 11 to 12 years old. Participant measurements included weight and height, which were used to categorize individuals based on BMI. Additionally, the electrical bioimpedance technique was employed to categorize participants based on their body fat percentage. A sudden destabilization test of the lower limb was performed to assess the reaction time of the rectus femoris, vastus medialis, and vastus lateralis muscles. The results show that overweight/obese children have a longer muscle reaction time for both the rectus femoris (β = 18.13; p = 0.048) and the vastus lateralis (β = 14.51; p = 0.042). Likewise, when the children were classified by percentage of body fat the results showed that overfat/obese children have a longer muscle reaction time for both the rectus femoris (β = 18.13; p = 0.048) and the vastus lateralis (β = 14.51; p = 0.042). Our results indicate that BMI and fat mass classification negativity alter the muscle reaction time in children. Overweight/obese or overfat/obese children showed longer reaction times in the rectus femoris and vastus lateralis muscles compared to children with normal weight. Based on these findings, it is suggested that in overweight and obese children, efforts not only focus on reducing body weight but that be complemented with training and/or rehabilitation programs that focus on preserving the normal physiological function of the musculoskeletal system.
Collapse
Affiliation(s)
- Eduardo Guzmán-Muñoz
- School of Kinesiology, Faculty of Health, Universidad Santo Tomás, Talca, Chile
- School of Pedagogy in Physical Education, Faculty of Education, Universidad Autónoma de Chile, Talca, Chile
| | | | | | | | - Pablo Valdes-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, Chile
- Sports Coach Career, School of Education, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Cristian Nuñez-Espinosa
- Medicine School, Universidad de Magallanes, Punta Arenas, Chile
- Teaching and Research Assistance Center, Universidad de Magallanes, Punta Arenas, Chile
| | - Tomas Herrera-Valenzuela
- Department of Physical Activity, Sports and Health Sciences, Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Sonnery-Cottet B, Hopper GP, Gousopoulos L, Pioger C, Vieira TD, Thaunat M, Fayard JM, Freychet B, Cavaignac E, Saithna A. Incidence of and Risk Factors for Arthrogenic Muscle Inhibition in Acute Anterior Cruciate Ligament Injuries: A Cross-Sectional Study and Analysis of Associated Factors From the SANTI Study Group. Am J Sports Med 2024; 52:60-68. [PMID: 38164669 DOI: 10.1177/03635465231209987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Arthrogenic muscle inhibition (AMI) is a process in which neural inhibition after injury or surgery to the knee results in quadriceps activation failure and knee extension deficit. PURPOSE To determine the incidence and spectrum of the severity of AMI after acute anterior cruciate ligament (ACL) injury using the Sonnery-Cottet classification, to determine the interobserver reliability of the classification system, and to investigate potential important factors associated with AMI after ACL injury. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Consecutive patients who had an acute ACL injury between October 2021 and February 2022 were considered for study inclusion. Eligible patients underwent a standardized physical examination at their first outpatient appointment. This included an assessment of quadriceps inhibition, identification of any extension deficits, and grading of AMI and its reversibility according to the Sonnery-Cottet classification. RESULTS A total of 300 consecutive patients with acute ACL ruptures were prospectively enrolled in the study. Of them, 170 patients (56.7%) had AMI. Patients evaluated with AMI showed a significantly inferior Lysholm score, International Knee Documentation Committee score, Simple Knee Value, and Knee injury and Osteoarthritis Outcome Score than patients without AMI (P < .0001). Multivariate analysis revealed that the presence of effusion, concomitant injuries, and high pain scores were associated with a significantly greater risk of AMI. Additional associations with the presence of AMI included a short duration between injury and evaluation, the use of crutches, and using a pillow as a support at night. In contrast, a previous ACL injury was associated with significantly lower odds of developing AMI (OR, 0.025; 95% CI, 0-0.2; P = .014). Among the 170 patients with AMI, 135 patients (79%) showed a resolution of their inhibition at the end of the consultation after application of simple exercises; the remaining 35 patients required specific rehabilitation. Interobserver reliability of the classification system was almost perfect (95% CI, 0.86-0.99). CONCLUSION AMI occurs in over half of patients with acute ACL injuries. When it occurs, it is easily reversible in the majority of patients with simple exercises targeted at abolishing AMI. The presence of "red flags" should increase the index of suspicion for the presence of AMI, and these include the presence of an effusion, high pain scores, a short time between injury and evaluation, multiligament injuries, the use of crutches, and using a pillow as a support at night. Patients with a history of ipsilateral or contralateral ACL injury are at a significantly lower risk of AMI than those with a first-time ACL injury.
Collapse
Affiliation(s)
- Bertrand Sonnery-Cottet
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | | | | | - Charles Pioger
- Department of Orthopedic Surgery, Ambroise Paré Hospital, Paris Saclay University, Paris, France
| | - Thais Dutra Vieira
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Mathieu Thaunat
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Jean-Marie Fayard
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Benjamin Freychet
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Etienne Cavaignac
- Department of Orthopaedic Surgery, Hôpital Pierre Paul Riquet, CHU de Toulouse, Toulouse, France
| | - Adnan Saithna
- Arizona Brain, Spine & Sports Injuries Center, Scottsdale, Arizona
| |
Collapse
|
7
|
Temporiti F, Moro S, Adamo P, Gatti R. Joint pressure stimuli increase quadriceps strength and neuromuscular activity in patients with knee osteoarthritis. J Electromyogr Kinesiol 2023; 73:102814. [PMID: 37677993 DOI: 10.1016/j.jelekin.2023.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
The study investigated the effects of periarticular knee pressure stimuli on quadriceps strength and neuromuscular activity in subjects with knee osteoarthritis. Twenty-five subjects with knee osteoarthritis and 25 age-matched healthy controls performed maximal voluntary knee extension tasks on an isometric dynamometer. Three different pressure stimuli (no-pressure, 60-mmHg, 120-mmHg) were applied using a sphygmomanometer via the cuff covering the knee joint. Peak torque and root-mean-square peak of rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were collected and normalized for the no-pressure condition (nTorque-peak and nRMS-peak). Normalized Torque-peak increased from no-pressure to 60-mmHg and 120-mmHg in patients, which revealed higher nTorque-peak during 60-mmHg (MD: 10.9%, IC95: 1.8%, 20.1%, p = 0.020) and 120-mmHg (MD: 16.0%, IC95: 4.4%, 27.6%, p = 0.008) conditions than healthy subjects. Moreover, nRMS-peak increased from no-pressure to 60-mmHg for RF, from no-pressure to 120-mmHg for RF, VM and VL, and from 60-mmHg to 120 mm-Hg for VL in patients. Patients revealed higher nRMS-peak of RF and VM during 60-mmHg and 120-mmHg conditions than healthy subjects. Periarticular knee pressure stimuli enhanced quadriceps strength and neuromuscular activity in subjects with knee osteoarthritis. This approach may represent a new strength training modality in patients with neuromuscular activation deficits for knee osteoarthritis.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Sara Moro
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Paola Adamo
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
8
|
Shui XP, Ye F, Li CY, Zhang X, Wang MJ, Li B, Chen K, Liao YY. Effects of millimeter-wave for preventing joint stiffness in the immobilized knee rat model. Knee 2023; 42:236-245. [PMID: 37086540 DOI: 10.1016/j.knee.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
AIM To explore the effects and mechanism of millimeter-wave treatment on the development of joint stiffness in the immobilized knee rat model. METHODS Twenty-four Sprague-Dawley (SD) rats were randomly divided into the control group (O, n = 8), the surgical control group (OC, n = 8), and the millimeter-wave treatment group (MO, n = 8). After immobilized knee modeling, the knee mobility and quadriceps diameter was measured at the 6th week. Hematoxylin and eosin and Masson staining were performed to detect the pathology and fibrous lesions of the knee joint. Furthermore, the expression of TGF-β1 and Collagen I was quantified by immunohistochemical assay in the knee capsule, and Western blotting was performed to quantify the protein expression of NF-κB and MuRF1 in skeletal muscle. RESULTS Compared with the O group, knee mobility, and quadriceps diameter was decreased (P < 0.01), and articular capsule fibrosis and quadriceps atrophy occurred in all rats with fixed knee joints. Compared with the OC group, millimeter-wave treatment significantly increased articular mobility and the quadriceps diameter; and improved the fibrotic lesions of the joint capsule and quadriceps atrophy. Moreover, levels of TGF-β1, Collagen I, and MuRF1 were upregulated (P < 0.01) by knee immobilization, and collagen fiber content in the articular capsule was also increased (P < 0.01). However, millimeter-wave treatment reversed it. The most noteworthy result was that NF-κB expression was not significantly different in all groups. CONCLUSION Millimeter-wave treatment reversed joint contracture and quadriceps atrophy caused by joint fixation, inhibited TGF-β1 and Collagen I protein expression of the joint capsule and reduced MuRF1 expression of the quadriceps muscle, thereby inhibiting the development of joint stiffness.
Collapse
Affiliation(s)
- Xiao-Ping Shui
- Department of Acupuncture and Massage, Sichuan College of Traditional Chinese Medicine, Mian-yang 621000, Sichuan, China; Department of Rehabilitation, Mian-yang Orthopedic Hospital, Mian-yang 621000, Sichuan, China.
| | - Feng Ye
- Department of Acupuncture and Massage, Sichuan College of Traditional Chinese Medicine, Mian-yang 621000, Sichuan, China
| | - Chun-Ying Li
- Department of Geriatric Medicine, Mian-yang Hospital of Traditional Chinese Medicine, Mian-yang 621000, Sichuan, China
| | - Xin Zhang
- Department of Rehabilitation Medicine, Sichuan Provincial Orthopedic Hospital, Chengdu 610000, Sichuan, China
| | - Min-Jia Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610000, Sichuan, China
| | - Bin Li
- Department of Rehabilitation, Mian-yang Orthopedic Hospital, Mian-yang 621000, Sichuan, China
| | - Ke Chen
- Department of Rehabilitation Medicine, Sichuan Provincial Orthopedic Hospital, Chengdu 610000, Sichuan, China
| | - Ying-Ying Liao
- Department of Rehabilitation Medicine, Sichuan Provincial Orthopedic Hospital, Chengdu 610000, Sichuan, China
| |
Collapse
|
9
|
Laube W. Deafferenzierung durch Verletzung, Degeneration und Alter – arthrogene Muskelhemmung – implizites Lernen. MANUELLE MEDIZIN 2022. [DOI: 10.1007/s00337-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Arthrogenic Muscle Inhibition: 20 Years On. J Sport Rehabil 2022; 31:665-666. [PMID: 35894917 DOI: 10.1123/jsr.2022-0200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
|